на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Доклад: Аппроксимация функций

Доклад: Аппроксимация функций

Аппроксимация функций.

Из курса математики известны 3 способа задания функциональных зависимостей: 1) аналитический 2) графический 3) табличный Табличный способ обычно возникает в результате эксперемента. Недостаток табличного задания функции заключается в том, что найдутся значения переменных которые неопределены таблицей. Для отыскания таких значений определяют приближающуюся к заданной функцию, называемой аппроксмирующей, а действие замены аппроксимацией.

Доклад: Аппроксимация функций

φ(х)
Аппроксимация заключается в том, что используя имеющуюся информацию по f(x) можно рассмотреть другую функцию φ(ч) близкую в некотором смысле к f(x), позволяющую выполнить над ней соответствующие операции и получить оценку погрешность такой замены. φ(х)- аппроксимирующая функция. Интерполяция (частный случай аппроксимации) Если для табличной функции y=f(x), имеющей значение x0 f(x0 ) требуется построить аппроксимирующюю функцию j(x) совпадающую в узлах с x i c заданной, то такой способ называется интерполяцией При интерполяции, заданная функция f(x) очень часто аппроксимируется с помощью многочлена, имеющего общий вид j(x)=pn(x)=anxn+an-1xn-1+.+a0 В данном многочлене необходимо найти коэффициенты an ,an-1 , .a0 , так как задачей является интерполирование, то определение коэффициентов необходимо выполнить из условия равенства: Pn(xi)=yi i=0,1,.n Для определения коэффициентов применяют интерполяционные многочлены специального вида, к ним относится и полином Лагранжа Ln(x). Доклад: Аппроксимация функций i¹j В точках отличных от узлов интерполяции полином Лагранжа в общем случае не совпадает с заданной функцией .

Задание

С помощью интерполяционного полинома Лагранжа вычислить значение функции y в точке xc, узлы интерполяции расположены равномерно с шагом Dх=4,1 начиная с точки х0=1,3 даны значения функции y={-6.56,-3.77,-1.84,0.1,2.29,4.31,5.86,8.82,11.33,11.27}.

ГСА для данного метода

Доклад: Аппроксимация функций CLS DIM Y(9) DATA -6.56,-3.77,-1.84,0.1,2.29,4.31,5.86,8.82,11.33,11.27 X0 = 1.3: H = 4.1: N = 10: XC = 10 FOR I = 0 TO N - 1 1 X(I) = X0 + H * I READ Y(I) PRINT Y(I); X(I) NEXT I S1 = 0: S2 = 0: S3 = 0: S4 = 0 FOR I = 0 TO N - 1 2 S1 = S1 + X(I) ^ 2 S2 = S2 + X(I) S3 = S3 + X(I) * Y(I) S4 = S4 + Y(I) NEXT I D = S1 * N - S2 ^ 2 D1 = S3 * N - S4 * S2 D0 = S1 * S4 - S3 * S2 A1 = D1 / D: A0 = D0 / D YC = A1 * XC + A0 PRINT "A0="; A0, "A1="; A1, "YC="; YC FOR X = 0 TO 50 STEP 10 Y = A1 * X + A0 PRINT X, Y NEXT X END XC= 10 Х Y 1.3 -6.56 5.4 -3.77 9.5 -1.84 13.6 .1 17.7 2.29 21.8 4.31 25.9 5.86 30 8.82 34.1 11.33 38.2 11.27 S=-1.594203 АППРОКСИМАЦИЯ ФУНКЦИЕЙ. МЕТОД НАИМЕНЬШИХ КВАДРАТОВ.

Доклад: Аппроксимация функций

В инженерной деятельности часто возникает необходимость описать в виде функциональной зависимости связь между величинами, заданными таблично или в виде набора точек с координатами (xi,yi), i=0,1,2,...n, где n - общее количество точек. Как правило, эти табличные данные получены экспериментально и имеют погрешности. При аппроксимации желательно получить относительно простую функциональную зависимость (например, полином), которая позволила бы "сгладить" экспериментальные погрешности, получить промежуточные и экстраполяционные значения функций, изначально не содержащиеся в исходной табличной информации. Графическая интерпретация аппроксимации. Эта функциональная (аналитическая) зависимость должна с достаточной точностью соответствовать исходной табличной зависимости. Критерием точности или достаточно "хорошего" приближения могут служить несколько условий. Обозначим через fi значение, вычисленное из функциональной зависимости для x=xi и сопоставляемое с yi . Одно из условий согласования можно записать как S = Доклад: Аппроксимация функций (fi-yi) ® min , т.е. сумма отклонений табличных и функциональных значений для одинаковых x=x i должна быть минимальной (метод средних). Отклонения могут иметь разные знаки, поэтому достаточная точность в ряде случаев не достигается. Использование критерия S = Доклад: Аппроксимация функций |fi-y i| ® min , также не приемлемо, т.к. абсолютное значение не имеет производной в точке минимума. Учитывая вышеизложенное, используют критерий наименьших квадратов , т.е. определяют такую функциональную зависимость, при которой S = (fi-yi)2 , (1) обращается в минимум. В качестве функциональной зависимости рассмотрим многочлен f(x)=C0 + C1X + C2X2+...+CMXM. (2) Формула (1) примет вид S = Доклад: Аппроксимация функций ( C0 + C1Xi + C2Xi2+...+CMXiM - Yi ) 2 Условия минимума S можно записать, приравнивая нулю частные производные S по независимым переменным С0,С1,...СМ : SC0 = 2 ( C0 + C1Доклад: Аппроксимация функций Xi + C2Доклад: Аппроксимация функций Xi2+...+CMДоклад: Аппроксимация функций XiM - Yi ) = 0 , SC1 = 2 ( C0 + C1Доклад: Аппроксимация функций Xi + C2Доклад: Аппроксимация функций Xi2+...+CMДоклад: Аппроксимация функций XiM - yi ) Xi = 0 , ............................................................................. .................... (3) SCM = 2 ( C0 + C1Доклад: Аппроксимация функций Xi + C2Доклад: Аппроксимация функций Xi2+...+CMДоклад: Аппроксимация функций XiM - Yi ) XiM = 0 , Тогда из (3) можно получить систему нормальных уравнений C0 Доклад: Аппроксимация функций (N+1) + C1 Доклад: Аппроксимация функций Xi + C2 Доклад: Аппроксимация функций Xi2 +...+ CM Доклад: Аппроксимация функций XiM = Доклад: Аппроксимация функций Yi , C0 Доклад: Аппроксимация функций Xi + C1 Доклад: Аппроксимация функций Xi2 + C2 Доклад: Аппроксимация функций Xi3 +...+ CM Доклад: Аппроксимация функций XiM+1 = Доклад: Аппроксимация функций Yi Xi , ....................................................................................................... (4) C0 Доклад: Аппроксимация функций XiM + C1 Доклад: Аппроксимация функций XiM+1 + C2 Доклад: Аппроксимация функций XiM+2 +...+ CM Доклад: Аппроксимация функций Xi2M =Доклад: Аппроксимация функций Yi XiM . Для определения коэффициентов Сi и, следовательно, искомой зависимости (2) необходимо вычислить суммы и решить систему уравнений (4). Матрица системы (4) называется матрицей Грама и является симметричной и положительно определенной. Эти полезные свойства используются при ее решении.

(N+1)

Доклад: Аппроксимация функций Xi

Доклад: Аппроксимация функций Xi2

...

Доклад: Аппроксимация функций XiM

Доклад: Аппроксимация функций Yi

Xi

Доклад: Аппроксимация функций Xi2

Доклад: Аппроксимация функций Xi3

...

Доклад: Аппроксимация функций XiM+1

Доклад: Аппроксимация функций

Yi Xi

...

...

...

...

...

...

XiM

Доклад: Аппроксимация функций XiM+1

Доклад: Аппроксимация функций XiM+2

...

Доклад: Аппроксимация функций Xi2M

Доклад: Аппроксимация функций Yi XiM

Нетрудно видеть, что для формирования расширенной матрицы (4а) достаточно вычислить только элементы первой строки и двух последних столбцов, остальные элементы не являются "оригинальными" и заполняются с помощью циклического присвоения. Задание Найти коэффициенты прямой и определить значение функции y{-6.56,-3.77, -1.84,0.1,2.29,4.31,5.56,8.82,11.33,11.27}, x0=1.3 h=4.1, и определить интеграл заданной функции. Доклад: Аппроксимация функций

Программа

¦CLS ¦XC = 10: X0 = 1.3: H = 4.1: N = 10 ¦DIM Y(9): DIM X(9) ¦DATA -6.56,-3.77,-1.84,0.1,2.29,4.31,5.86,8.82,11.33,11.27 ¦FOR I = 0 TO N - 1 ¦X = X0 + H * I: ¦X(I) = X ¦READ Y(I) ¦PRINT X(I), Y(I) ¦NEXT I ¦S1 = 0: S2 = 0: S3 = 0: S4 = 0 ¦I = 0 ¦10 S1 = S1 + X(I) ^ 2: ¦S2 = S2 + X(I): ¦S3 = S3 + X(I) * Y(I): ¦S4 = S4 + Y(I) ¦I = I + 1 ¦IF I <= N - 1 THEN 10 ¦D = S1 * N - S2 ^ 2: ¦D1 = S3 * N - S2 * S4: ¦D0 = S1 * S4 - S2 * S3 ¦A1 = D1 / D: ¦A0 = D0 / D ¦Y = A1 * XC + A0 ¦PRINT TAB(2); "КОЭФФИЦИЕНТ ПРЯМОЙ В ТОЧКЕ A0="; A0, ¦PRINT TAB(2); "КОЭФФИЦИЕНТ ПРЯМОЙ В ТОЧКЕ A1="; A1, ¦PRINT TAB(2); "ЗНАЧЕНИЕ ФУНКЦИИ В ТОЧКЕ XC Y="; Y ¦FOR X = 10 TO 50 STEP 10 ¦Y = A1 * X + AO ¦PRINT X, Y ¦NEXT X ¦FOR I = 1 TO N - 1 ¦S = S + Y(I): NEXT I ¦D = H / 2 * (Y(0) + Y(N - 1) + 2 * S) ¦PRINT "ЗНАЧЕНИЕ ИНТЕГРАЛА ПО МЕТОДУ ТРАПЕЦИИ D="; D

Ответы

Х Y 1.3 -6.56 5.4 -3.77 9.5 -1.84 13.6 .1 17.7 2.29 21.8 4.31 25.9 5.86 30 8.82 34.1 11.33 38.2 11.27 КОЭФФИЦИЕНТ ПРЯМОЙ В ТОЧКЕ A0=-6.709182 КОЭФФИЦИЕНТ ПРЯМОЙ В ТОЧКЕ A1= .5007687 ЗНАЧЕНИЕ ФУНКЦИИ В ТОЧКЕ XC Y=-1.701495 10 5.007687 20 10.01537 ЗНАЧЕНИЕ ИНТЕГРАЛА ПО МЕТОДУ ТРАПЕЦИИ D= 166.9725

© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.