на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Анализ следов веществ

Анализ следов веществ

Анализ следов веществ

Термины макро и микро применяются в химическом анализе как для выражения размера пробы, так и для выражения относительного количества компонента, подлежащего определению. На заре развития аналитической химии использовались относительно большие пробы, поэтому не требовалось никакого особого обозначения для определения масштаба аналитических операций. По мере возрастания требований науки и техники и прогресса аналитических методов стали возможны химические определения на пробах в миллиграммовых количествах вместо десятков граммов; с тех пор вошел в обиход термин микроанализ в отличие от старого, называемого в настоящее время макроаншизом. Хотя абсолютные количества веществ, с которыми приходится оперировать в макро- и микроанализе, различаются в 10 и 100 раз, относительные количества определяемых компонентов остаются темп же, т.е. больше 0,01 пли даже 0,1. Химические определения ниже этого предела выполнялись редко как из-за отсутствия потребности, так и вследствие трудностей анализа такого количества вещества существовавшими методами. Известно, что затем был введен термин следы для обозначения ничтожного количества вещества, присутствующего в пробе, но точно не определяемого. Положение в настоящее время значительно изменилось. Теперь потребности науки и техники в определении компонентов, составляющих лишь малую долю анализируемого образца, сильно возросли, и желательно следы вещества определять более точно. Как с логической, так и с исторической точки зрения имеется веское основание для установления верхнего предела содержания следов вещества, или микрокомпонента, равного 0,01%. В связи с этим представляет интерес утверждение, сделанное в отношении анализа горных пород: «Относительно термина «следы» можно сказать, что под ним подразумевают такую концентрацию вещества, которая находится ниже предела количественного определения его в образце, взятом для анализа. Для анализов, претендующих на полноту и точность, в общем случае следует указать, что предполагаемое содержание интересующего компонента меньше 0,02 или даже 0,01%».

Значение концентрации 0,01% приблизительно соответствует нижней границе чувствительности обычно применяемых весового и объемного методов анализа, поэтому мы можем принять его как ориентировочно указывающее верхний предел содержания следов вещества. Нет никакой необходимости для установления жесткой концентрационной границы для микрокомпонента. Иногда удобно рассматривать как следы примесь, которая содержится в количестве нескольких сотых долей процента. Так, например, в силикатных породах содержание меди обычно составляет 0,001-0,05%, однако можно говорить о меди как о следах примеси в этом материале.

Чтобы уменьшить резкость перехода от микро- к макрокомпонентам, удобно подразделить последние на главные и второстепенные. Область второстепенного макрокомпонента лежит в пределах от 0,01 до 1%. Она имеет, по крайней мере, у своей нижней границы, несомненное сходство с областью микрокомпонента, и для определения второстепенного макрокомпонента часто применяют методы, используемые при анализе следов веществ.

Содержание главного или второстепенного компонента в образце обычно выражают в весовых процентах. Те же единицы часто используют для выражения содержания следов вещества, но удобнее давать их содержание в частях на миллион, особенно для концентраций ниже 0,001%.

Существенная особенность анализа следов веществ состоит не просто в определении малого количества вещества, а в его обнаружении в присутствии подавляющего количества других веществ, которые могут серьезно повлиять на реакции определения микрокомпонентов. Анализ следов веществ имеет характерные черты как макро-, так и микроанализа. Величина пробы, а иногда и предварительные стадии проведения анализа следов вещества подобны тем, которые используются при макроанализе. Иногда для осуществления анализа следов вещества требуется больший исходный образец, чем используется при макроанализе. В редких - случаях употреблялись образцы, весящие несколько сот килограммов. Конечная стадия анализа при определении следов веществ может иметь более микроскопический характер, чем в обычном микроанализе, где 1 у является пределом желаемой точности определения. Многие колориметрические методы позволяют определять 1 у или меньшее количество вещества с точностью 5-1096; то же самое относится к спектральному методу анализа. В радиоактивационном анализе приходится иметь дело с еще меньшими количествами вещества.

Таблица 1. Распространение некоторых редких элементов в вулканических породах

Элеыент

Содержание, ч. на ылн.

Элеыент

Содержание, ч. на млн.

Ag

0,1

Nb

20

As

2

Ni

80

Au

0,005

P

800

В

3

Pb

15

Ва

250

Pd

0,01

Be

2

Pt

0,005

Bi-

0,2

Rb

310

Cd

0,15

Re

0,001

Се

46

S

520

CI

200

Sb

0,1

Со

23

Sc

5

Cr

200

Se

0,09

Cs

7

Sn

2

Си

70

Sr

450

F

300

Та

15 (?)

Ca

15

Те

0,002 (?)

Ge

1.5

Th

11,5

Hf

4,5

Ti

4400

Hg

0,5

Tl

0,3

J

0,3

U

4

In

0,1

V

150

La

18

W

1

Li

65

Y

21

Mn

1000

Zn

80

Mo

1

Zr

220

Рассмотрение распределения следов элементов в природе не входит в план настоящей книги, однако небезынтересно привести таблицу распространения редких элементов в вулканических породах. Некоторые из указанных в ней значений являются приближенными. Для большинства элементов среднее содержание в земной коре такое же, как и в вулканических породах. Многие из так называемых редких элементов встречаются в природе столь же часто, как и элементы, которые обычно считают распространенными. Германий имеется примерно в таком же количестве, как и мышьяк, галлий - как свинец, церий - как цинк; скандием природа богаче, чем ртутью или висмутом, и т.д. Редкие элементы тем или

иным путем переходят из вулканических пород в растения или организмы животных, и многие из них с течением времени концентрируются в живой материи. Важная роль, которую играют в биологических процессах следы элементов, теперь хорошо известна, и их определение представляет практический и научный интерес.

Методы анализа следов веществ

При определении следов элементов использовались и используются методы, аналогичные тем, которые применяют в общем химическом анализе. Следы веществ определяли даже весовыми методами. Например, весовым методом был определен галлий в образце алюминия весом 50 г. с содержанием Ga менее 0,001%. Для анализа следов веществ в верхней концентрационной области иногда можно эффективно применять объемные методы, особенно в тех случаях, когда конечная точка титрования находится электрометрически. При определении следов тяжелых металлов иногда применяют экстрактивное титрование раствором дитизона в органическом растворителе. Однако, когда возникает необходимость определения весьма малых количеств веществ, обычно применяют ие весовой или объемный, а другие методы анализа. Наиболее важные из них, распространенные в настоящее время, перечислены ниже.

1. Колориметрический, спектрофотометрический и связанные с ними методы.

2. Метод оптической спектрографии.

Метод рентгеноспектроскопии, основанный на поглощении и испускании рентгеновских лучей.

Радиоактивационный метод.

Масс-спектрометрический метод.

Полярографический и другие электрохимические методы.

Метод катализа и индукции.

Другие методы.

Некоторые из этих методов обладают не только высокой чувствительностью, но и пригодны для определения. следов большинства элементов. Другие методы не имеют достаточной чувствительности, и ценность их применения в области концентраций несколько частей на миллион ограничена. Часть методов пока недоступна для обычных аналитических лабораторий.

Радиоактивационный анализ. До тех пор пока определение элементов путем измерения радиоактивности ограничивалось естественными радиоактивными элементами, оно представляло незначительный интерес. Положение существенно изменилось в настоящее время, когда можно получать радиоизотопы большинства элементов путем нейтронного облучения последних в ядерном реакторе. Метод нейтронной активации применяется для определения следов элементов во всевозрастающем масштабе. Нижний предел радиоактивационного определения составляет 0,01-0,0001 ч. на млн. При выполнении активационного анализа взвешенный образец облучается нейтронами в ядерном реакторе в течение определенного периода времени. В процессе облучения образуется один или несколько радиоизотопов исследуемого элемента. Радиоактивность А за время t после начала нейтронной бомбардировки вычисляется по уравнению

Страницы: 1, 2, 3



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.