на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Эксклюзионная хроматография

Эксклюзионная хроматография

Эксклюзионная хроматография

Основные понятия

Эксклюзионная хроматография представляет собой вариант жидкостной хроматографии, в котором разделение происходит за счет распределения молекул между растворителем, находящимся внутри пор сорбента, и растворителем, протекающим между его частицами.

В отличие от остальных вариантов ВЭЖХ, где разделение идет за счет различного взаимодействия компонентов с поверхностью сорбента, роль твердого наполнителя в эксклюзионной хроматографии заключается только в формировании пор определенного размера, а неподвижной фазой является растворитель, заполняющий эти поры. Поэтому применение термина «сорбент» к данным наполнителям в определенной степени условно.

Принципиальной особенностью метода является возможность разделения молекул по их размеру в растворе в диапазоне практически любых молекулярных масс - от 102 до 108, что делает его незаменимым для исследования синтетических и биополимеров.

По традиции процесс, проводимый в органических растворителях, все еще часто называют гель-проникающей, а в водных системах - гель-фильтрационной хроматографией. Принят единый термин, который происходит от английского «Size Exclusion» - исключение по размеру - и в наиболее полной степени отражает механизм процесса.

Детальный разбор существующих представлений о весьма сложной теории процесса эксклюзионной хроматографии проведен в монографиях. Мы рассмотрим только принципиальные основы метода, достаточные для практической работы.

Объем эксклюзионной колонки можно выразить суммой трех слагаемых:

Vс=Vо+Vi+Vd,

где Vо - мертвый объем - объем растворителя между частицами сорбента (объем подвижной фазы); Vi - объем пор, занятый растворителем (объем неподвижной фазы); Vd - объем матрицы сорбента без учета пор.

Полный объем растворителя в колонке Vt (его часто называют полным объемом колонки, так как Vd не принимает участия в хроматографическом процессе) представляет собой суммy объемов подвижной и неподвижной фаз:

Vt=Vо+Vi.

Удерживание молекул в эксклюзионной колонке определяется вероятностью их диффузии в поры и зависит от соотношения размеров молекул и пор, что схематически показано на рис. 2.15. Коэффициент распределения Kd, как и в других вариантах хроматографии, представляет собой отношение концентраций вещества в неподвижной и подвижной фазах:

Кd = Сi / Со.

Так как подвижная и неподвижная фазы имеют одинаковый состав, то Kd вещества, для которого обе фазы одинаково доступны, равен единице. Эта ситуация реализуется для молекул с самыми малыми размерами (в том числе и молекул растворителя), которые проникают во все поры (см. рис. 2.15) и поэтому движутся через колонку наиболее медленно. Их удерживаемый объем равен полному объему растворителя Vt.

Рис. 1. Модель разделения молекул по размеру в эксклюзионной храматографии

Все молекулы, размер которых больше размера пор сорбента, не могут попасть в них (полная эксклюзия) и проходят по каналам между частицами. Они элюируются из колонки с одним и тем же удерживаемым объемом, равным объему подвижной фазы Vo. Коэффициент распределения для этих молекул равен нулю.

Молекулы промежуточного размера, способные проникать только в какую-то часть пор, удерживаются в колонке в соответствии с их размером. Коэффициент распределения этих молекул изменяется в пределах от нуля до единицы и характеризует долю объема пор, доступных для молекул данного размера. Их удерживаемый объем определяется суммой Vo и доступной части объема пор:

VR=Vo+KdVi.

Отсюда следует еще одно существенное отличие эксклюзионной хроматографии: в данном методе разделение заканчивается до выхода пика растворителя, в то время как в других вариантах ВЭЖХ компоненты смеси элюируются после пика растворителя.

Параметр k' в эксклюзионной хроматографии обычно не используют. Его можно выразить уравнением

k' = KdVi / Vo.

Для большинства современных сорбентов Vi ? Vo, поэтому k' ? Kd.

Связь между удерживаемым объемом и молекулярной массой (или размером молекул) образца описывается калибровочной кривой (рис. 2.16). Каждый сорбент характеризуется своей калибровочной кривой, по которой легко оценить область разделяемых на нем молекулярных масс. Точка А соответствует пределу эксклюзии, или мертвому объему колонки Vo. Все молекулы, масса которых больше, чем в точке А, будут элюироваться одним пиком с удерживаемым объемом Vo. Точка В отражает предел проникания, и все молекулы, масса которых меньше, чем в точке В, также будут выходить из колонки одним пиком с удерживаемым объемом Vt. Между точками А и В располагается диапазон селективного разделения. Соответствующий ему объем Vi=Vt-Vo часто называют рабочим объемом колонки. Отрезок CD представляет собой линейный участок калибровочной кривой, построенной в координатах VR-IgM. Этот участок описывается уравнением

Vr = C1 - C2lgM,

где C1 - отрезок, отсекаемый на оси ординат продолжением отрезка СD, C2 - тангенс угла наклона этого отрезка к оси ординат.

Величину С2 называют разделительной емкостью колонки; ее выражают числом миллилитров растворителя, приходящегося на один порядок изменения молекулярной массы. Чем больше разделительная емкость, тем селективнее разделение в данном диапазоне масс. В нелинейных областях калибровочной кривой (участки АС и BD) в связи с уменьшением С2 эффективность фракционирования заметно снижается. Кроме того, нелинейная связь между IgM и Vr существенно усложняет обработку данных и снижает точность результатов. Поэтому всегда нужно стремиться выбирать колонку (или набор колонок) так, чтобы разделение анализируемого полимера протекало в пределах линейного участка калибровочной кривой.

Если какое-либо вещество элюируется с удерживаемым объемом больше Vt, то это указывает на проявление других механизмов разделения (чаще всего адсорбционного). Адсорбционные эффекты обычно проявляются на жестких сорбентах, но иногда наблюдаются и на полужестких гелях, видимо, из-за повышенного сродства к матрице геля. Примером может служить адсорбция ароматических соединений на стирол-дивинилбензольных гелях.

Рис. 2. Калибровочная кривая

Советские исследователи предложили теорию единого механизма жидкостной хроматографии полимеров на жестких гелях, из которой следует, что изменением параметров взаимодействия в системе полимер - сорбент - растворитель можно переходить от адсорбционного механизма к эксклюзионному и наоборот. В общем случае в эксклюзионной хроматографии нужно стремиться полностью подавить адсорбционные и другие побочные эффекты, так как они, особенно при исследовании молекулярно-массового распределения (ММР) полимеров, могут существенно исказить результаты анализа.

Принципиальными отличиями эксклюзионной хроматографии от других вариантов являются заранее известная продолжительность анализа в конкретной используемой системе, возможность предсказания порядка элюирования компонентов по размеру их молекул, примерно одинаковая ширина пиков во всем диапазоне селективного разделения и уверенность в выходе всех компонентов пробы за достаточно короткий промежуток времени, соответствующий объему Vt. Хотя данный метод применяют, главным образом, для исследования ММР полимеров и анализа макромолекул биологического происхождения (белки, нуклеиновые кислоты и т.д.), указанные особенности делают его чрезвычайно перспективным для анализа низкомолекулярных примесей в полимерах и предварительного разделения проб неизвестного состава. Получаемая при этом информация существенно облегчает выбор наилучшего варианта ВЭЖХ для анализа данной пробы. Кроме того, микропрепаративное эксклюзионное разделение часто используют в качестве первого этапа при разделении сложных смесей путем комбинации различных видов ВЭЖХ.

Ограниченный диапазон коэффициентов распределения определяет и главный недостаток эксклюзионной хроматографии - заметно меньшее, чем в других вариантах ВЭЖХ, число пиков, которые могут быть полностью разделены на колонке заданной эффективности. Однако в последнее время благодаря успехам достигнутым в технологии изготовления высокоэффективных колонок, этот метод все шире применяют и для разделения малых молекул.

Особенности аппаратуры

Аппаратура для эксклюзионной хроматографии принципиально ничем не отличается от той, которую используют в других видах ВЭЖХ. Эксклюзионное разделение можно осуществить на любом жидкостном хроматографе, установив в него соответствующие колонки. Характеристики аппаратуры влияют главным образом на точность получаемых результатов. Специфичными для данного метода являются только некоторые детекторы и особые требования к системам обработки данных.

Из всех вариантов ВЭЖХ в эксклюзионной хроматографии полимеров предъявляются наиболее жесткие требования к стабильности потока подвижной фазы. Поэтому нужно использовать насосные системы с точностью подачи не хуже 0,3-0,5%. В лучших насосах, разработанных специально для данного метода, нестабильность скорости потока снижена до 0,1%.

Между дозатором и колонками весьма желательно устанавливать фильтр с минимальным мертвым объемом, так как забивание входного фильтра колонки при анализе полимеров происходит гораздо чаще, чем в других видах ВЭЖХ.

Точность результатов в экоклюзионной хроматографии полимеров заметно зависит от температуры. При ее изменении на 10 °С ошибка определения средних молекулярных масс превышает ±10% [23]. Поэтому в данном варианте ВЭЖХ термостатирование разделительной системы обязательно.

Дозатор и колонки обычно размещают в одном термостате. Как правило, достаточна точность поддержания температуры ±1 °С в пределах до 80-100 °С. В некоторых случаях, например, при анализе полиэтилена и полипропилена, рабочая температура составляет 135-150 °С. Необходимо также принимать меры для предотвращения заметных изменений температуры в линии, соединяющей колонку с детектором. При рабочих температурах до 40-50 °С и длине линии 5-8 см ее целесообразно изготавливать из фторопластового капилляра с наружным диаметром около 1,5 мм, внутренним - 0,3 мм. При более высоких температурах требуется термостатирование капилляра.

Наиболее распространенным детектором в эксклюзионной хроматографии полимеров является дифференциальный рефрактометр. При работе с этим детектором следует помнить, что в диапазоне примерно до 5?103-5?104 его сигнал зависит от молекулярной массы полимера. Поэтому при исследовании полимеров, содержащих значительное количество низкомолекулярных фракций, в процессе обработки результатов нужно вводить соответствующие поправки или, если это возможно, проводить специальную калибровку детектора. Из детекторов, разработанных специально для анализа полимеров, следует упомянуть вискозиметрический детектор и проточный лазерный нефелометр (детектор малоуглового лазерного светорассеяния). Эти детекторы в комбинации с рефрактометром или другим концентрационным детектором позволяют непрерывно определять молекулярную массу полимера в элюенте. При их использовании отпадает необходимость калибровки разделительной системы по исследуемому полимеру, но обработка информации может осуществляться только на ЭВМ. Вискозиметрический детектор, кроме того, является очень удобным прибором для исследования длинноцепной разветвленности синтетических полимеров.

Обычные электронные интеграторы, используемые в ВЭЖХ индивидуальных соединений, непригодны для обработки данных, получаемых при эксклюзионной хроматографии полимеров. Для этой цели используют мини-компьютеры, которые выполняют по специальным программам необходимые вычисления и выдают результаты опреде-

ления в виде средних молекулярных характеристик или кривых ММР. Современные приборы могут быть оснащены дополнительными устройствами для полной автоматизации анализа. Применение автоматических дозаторов в сочетании с мини-компьютером позволяет выполнять различные калибровки, выдавать в требуемой форме данные по ММР, проводить их статистический анализ без участия операторов.

Как отмечалось выше, в настоящее время анализ полимеров проводят в основном на обычной хроматографической аппаратуре. Однако существуют и специальные приборы, предназначенные преимущественно для определения ММР полимеров. К ним относится, в частности, микрогельхроматограф ХЖ-1309. Технические характеристики хроматографа приведены в приложении 14.6. Этот уникальный прибор оснащен высокочувствительным лазерным рефрактометром с вместимостью кюветы 0,1 мкл [24] и микроколонками диаметром 0,5 мм с эффективностью около 30 тыс. т. т./м. Продолжительность анализа составляет 5-10 мин, а расход растворителя - приблизительно 100 мкл на один анализ, что позволяет работать с особо дефицитными и сверхочищенными растворителями. Калибровку прибора и обработку результатов проводят на ЭВМ с пакетом программ, обеспечивающих выполнение любых расчетов, необходимых в эксклюзионной хроматографии полимеров.

Выбор сорбента

Выбор сорбентов, обеспечивающих оптимальные условия для решения конкретной аналитической задачи, проводят в несколько этапов. Первоначально на основе данных о химическом составе или растворимости анализируемых веществ устанавливают, какой вариант процесса следует применить - хроматографию в водных системах или в органических растворителях, что в значительной степени определяет тип необходимого сорбента. Разделение веществ низкой и средней полярности в органических растворителях можно успешно осуществить как на полужестких, так и на жестких гелях. Исследование ММР гидрофобных полимеров, содержащих полярные группы, чаще проводят на колонках со стирол-дивинилбензольными гелями, так как в этом случае практически не проявляются адсорбционные эффекты и не требуется добавка модификаторов к подвижной фазе, что значительно упрощает подготовку и регенерацию растворителя.

Страницы: 1, 2



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.