на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Поиск новых фторидофосфатов лития и переходных металлов

Поиск новых фторидофосфатов лития и переходных металлов

Министерство образования Российской федерации

Государственное образовательное учреждение высшего профессионального образования

«РОСТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Химический факультет

ДИПЛОМНАЯ РАБОТА

на тему: «ПОИСК НОВЫХ ФТОРИДОФОСФАТОВ ЛИТИЯ И ПЕРЕХОДНЫХ МЕТАЛЛОВ»

Студент 6 курса

Ворона М.Л.

Научный руководитель,

доцент, кандидат хим. наук

Налбандян В. Б.

Рецензент

Ст. научный сотр. НИИФОХ, кандидат хим. наук

Медведева Л. И.

Нормоконтролер

Богатырева Н.К.

г. Ростов-на-Дону

2004

Содержание

Введение

1. Литературный обзор

1.1. Литий-ионные аккумуляторы

1.2. Смешанные фосфаты лития и переходных металлов

1.3. Смешанные фторидофосфаты щелочных и переходных металлов.

2. Исходные вещества и методы эксперимента

2.1. Исходные вещества и их анализ

2.2. Проведение синтезов

2.3. Рентгенофазовый анализ

3. Результаты и их обсуждение

3.1. Фторидофосфат никеля-лития

3.2. Фторидофосфат кобальта-лития

3.3. Фторидофосфаты железа-лития и марганца-лития

3.4. Опыт по окислению

4. Выводы и перспективы

Список использованных источников

Введение

Для современной техники очень важны энергоемкие и портативные аккумуляторы. Используемые в них электродные материалы обладают рядом недостатков и поэтому актуален поиск новых материалов. В частности, для положительного электрода литий-ионного аккумулятора нужны материалы, способные к быстрому и обратимому внедрению-извлечению лития с достаточно высоким потенциалом относительно лития. Данная работа посвящена поиску новых смешанных фторидофосфатов лития с переходными металлами, легко меняющими степень окисления: марганцем, железом, кобальтом, - и исследованию возможности окислительного извлечения лития из них, как первому шагу к испытанию их в качестве электродных материалов.

1. Литературный обзор

1.1. Литий - ионные аккумуляторы

Становление технологий никель-металлгидридных и литий-ионнных аккумуляторов вытесняет известные никель-кадмиевые аккумуляторы.

Батарея - устройство для накопления энергии, или, когда речь идёт о современных технологиях, под батареей обычно понимают автономную химическую систему, производящую электроэнергию [1]. Батарея составлена из нескольких электрохимических ячеек, соединенных последовательно или параллельно, чтобы обеспечить необходимое напряжение и емкость. Каждая ячейка состоят из положительного и отрицательного электрода, отделенных жидким или твердым электролитом. Побуждением для использования технологии батареи, основанной на литии, как аноде, полагают тот факт, что этот металл является очень сильным восстановителем и очень легким, тем самым обеспечивается высокая энергоемкость. В зависимости от типа положительного электрода, литиевые элементы могут создавать напряжение от полутора до 4 вольт, что выше, чем у любых других элементов. Поскольку литий взаимодействует с водой и спиртами, в качестве электролитов используются апротонные жидкости - растворы гексафторфосфата или гексафторарсената лития в смеси эфиров (диметилкарбоната, этиленкарбоната, пропиленкарбоната, диметоксиэтана и т.д.).

Таким образом, достигается превращение накопленной химической энергии в энергию электрическую (разрядка). Как только к электродам присоединят внешний источник тока, т.е. пропустят через них электрический ток, тогда электрическая энергия в них преобразуется в химическую (перезарядка). Ячейки характеризуются количеством запасаемой электрической энергии или заряда в расчете на единицу массы (Вт*час/кг или A*час/кг) или единицу объема (Вт*час/л или А*час/л), разрядным напряжением и циклируемостью. Литий-ионные батареи из-за их высокой энергетической плотности и гибкости конструкции в настоящее время превосходят другие системы, составляя 63 % оцениваемого всемирного рынка переносных батарей [2].

Первоначально в качестве материала отрицательного полюса использовался чистый литий. Но, как выяснилось, при первом контакте литий восстанавливает раствор, и на его поверхности образуется пленка из продуктов восстановления. Пленка эта достаточно тонкая (несколько нанометров), сплошная и проводящая, причем носителями заряда будут ионы лития (по сути дела, получается твердый электролит). Пленка становится барьером, и дальше металлический литий с электролитом не взаимодействует. Таким образом, на аноде литиевого элемента в аккумуляторе при разряде будет протекать реакция: Li Li+ + e. А вот при заряде или так называемом катодном осаждении лития, происходит перемещение ионов лития с положительного электрода и осаждение на отрицательном электроде. Этот процесс, во-первых, может вызвать рост литиевых дендритов и короткое замыкание -- верный путь к возгоранию или взрыву элемента, а во-вторых,  при осаждении лития образуется свежая очень активная поверхность, мгновенно реагирующая с электролитом. На этой поверхности сразу нарастает пленка, предотвращая электрический контакт с самим электродом. Из-за этого в аккумуляторы с металлическим литиевым электродом приходится закладывать избыточное количество лития, с расчетом на то, что часть его потеряется. Вот поэтому литиевые аккумуляторы (с электродом из чистого металлического лития) теряют свое значение. На смену им пришли так называемые литий-ионные аккумуляторы, где отрицательным электродом служит не чистый литий, а фаза внедрения лития в подходящую матрицу с достаточно низким электродным потенциалом.

Углерод оказался очень удобной матрицей для помещения в него лития. Удельный объем углеродных материалов при этом изменяется не сильно -- даже при внедрении достаточно большого количества лития он увеличивается не более чем на 10%. Чем больше лития внедрено в углерод, тем отрицательнее потенциал электрода [3].

Такие элементы работают без подзарядки в полтора раза дольше никель-металлгидридных. Кроме того, в литий-ионных элементах не наблюдаются эффекты памяти, которыми славились ранние никель-кадмиевые элементы. С другой стороны, внутреннее сопротивление у современных литиевых элементов выше, чем у никель-кадмиевых. Соответственно, они не могут обеспечить больших токов. Литий-ионная батарея выдерживает многократные подзарядки: 500-1000 циклов [4].

В качестве положительного электрода используются соединения переходных металлов, способных к легкому изменению степени окисления с обратимым внедрением-извлечением лития. Чтобы ячейка могла разряжаться большими токами, нужна большая электронная проводимость и высокий коэффициент диффузии лития, а для этого в структуре должны быть каналы для миграции лития. А чтобы разряд и заряд были обратимыми, структура должна быть достаточно жесткой, чтобы сохраняться практически неизменной и в отсутствие лития.

Наиболее широко распространенным материалом является кобальтит лития LiCoO2. При заряде ионы лития извлекаются из кобальтита и внедряются в углерод:

(положительный электрод) LiCoO2 x Li+ + x e + Li1-xCoO2

(отрицательный электрод) Li+ + e + 6 C LiC6

При разряде идут обратные процессы, степень окисления кобальта при этом снижается [3].

Сложный оксид LiCoO2 обладает слоистой структурой, в которой ионы лития и кобальта упорядочены в чередующихся плоскостях. Наличие плоскостей, занятых исключительно ионами лития, обеспечивает возможность почти полного извлечения щелочного металла и тем самым применимость данного соединения в качестве катодного материала в химических источниках тока. Но продукт полного извлечения - слоистый CoO2 - очень неустойчив, и на практике циклирование ведут в диапазоне x от 0 до приблизительно 0,5 [2].

При десяти циклах заряд (4,2 В) - разряд (3,5 В) начальная удельная разрядная емкость 145 A*час/кг. Потери разрядной удельной емкости 0,1% на 1 цикл [5].

К недостаткам кобальтита лития относят то, что при многократном циклировании часть ионов кобальта перемещается в литевые слои, слоистая структура перестраивается в каркасную типа шпинели, и движение ионов лития затрудняется, а также высокую стоимость и токсичность [2].

Поэтому ведутся интенсивные поиски и исследования альтернативных материалов. В частности, большое число работ посвящено легированию LiCoO2, структурно родственным ему соединениям LiMnO2, LiNiO2 , фазам типа шпинели на основе LiMn2O4 и др. В частности, хорошо зарекомендовали себя фазы типа оливина LiMPO4 (где M = Mn, Fe, Co, Ni), описываемые ниже.

1.2. Смешанные фосфаты лития и переходных металлов

Двойные фосфаты, имеющие общую формулу LiMPO4 (где M = Mn, Fe, Co, Ni), изоструктурны оливину - силикату магния и железа (Mg,Fe)2SiO4.

Таблица 1

Параметры решетки и разрядные характеристики соединений LiMPO4 [6- 9]

M

a, Е

b, Е

c, Е

U, В

Емкость, А*час/кг

Mn

10,45

6,11

4,75

4,1

140

Fe

10,31

6,00

4,69

4,3

148

Co

10,20

5,92

4,68

4,8

86

Ni

10,20

5,92

4,68

Фосфаты LiMPO4, где M = Mn, Co, Ni получены в ходе взаимодействия карбоната лития, оксида металла (MO или MnO2) и дигидрофосфата аммония - (NH4)2HPO4 при температуре 350 C, которую затем повышали до 780 C и выдерживали 18 часов на воздухе [6]. LiFePO4 получен аналогично, но в инертной атмосфере [10].

1.3. Смешанные фторидофосфаты щелочных и переходных металлов

Просмотр реферативных журналов, баз данных PDF-2 и ICSD обнаружил только три фазы формульного типа A+2MPO4F, из них с литием только одна: Li2NiPO4F [11]. Известны также Na2MnPO4F [12], Na2MgPO4F [13], Na4,6FeP2O8,6F0,4 [14, 15, 16, 17].

Структура Li2NiPO4F (рис. 1) определена рентгенографически на монокристалле [11]. Она относится к ромбической сингонии (пространственная группа Pnma, параметры a = 10.473(3) Е, b = 6.2887(8) Е, c = 10.846(1) Е, Z=8). В структуре можно выделить рутиловые цепи из октаэдров NiO4F2, соединенных ребрами, вытянутые вдоль оси y. Эти цепи соединены в двух остальных измерениях тетраэдрами PO4. В пустотах каркаса размещаются катионы лития. Половина их находится в уплощенных тетраэдрах из четырех атомов кислорода, четверть - в квадратных пирамидах из 4 O + 1 F и еще одна четверть в сильно асимметричной координации, где трудно сделать однозначный выбор между КЧ 4,5,6. Достаточно короткие (до 3,21 Е) расстояния Li-Li соединяют все позиции лития в двумерную сеть в плоскости y0z (рис. 2). Это позволяет ожидать достаточно высокую подвижность ионов лития в каркасе и возможность их извлечения с окислением никеля и сохранением исходного каркаса:

Li2Ni2+PO4F LiNi3+PO4F + Li+ + e Ni4+PO4F + 2 Li+ + 2 e

Но сведений о таких свойствах Li2NiPO4F в литературе не обнаружено. Можно было бы ожидать существование аналогичных фаз, содержащих на месте никеля другие катионы близкого размера с переменной степенью окисления (табл. 2), но никаких сведений о них в литературе также не обнаружено.

Таблица 2

Эффективные кристаллохимические радиусы [18] некоторых двухзарядных катионов в октаэдрической координации в высокоспиновом состоянии

M

Mn2+

Fe2+

Co2+

Ni2+

VIR, Е

0,97

0,92

0,885

0,83

В данной работе поставлена задача получения новых фаз состава Li2MPO4F, где M = Mn, Fe, Co, и исследования возможности окислительного извлечения лития из них и из ранее известного никелевого соединения. Предполагалось, что за счет удвоенного содержания лития можно будет повысить емкость электродного материала по сравнению с фазами типа оливина (табл. 3).

Таблица 3

Теоретические удельные емкости некоторых известных и предполагаемых материалов положительного электрода литий-ионного аккумулятора

Страницы: 1, 2



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.