на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Поверхностно-активные полимеры

Поверхностно-активные полимеры

Реферат

по биологии

на тему:

"Поверхностно-активные полимеры"

Поверхностно-активные полимеры, или полимерные ПАВ, получили широкое распространение в последние 20 лет и сейчас используются во многих технологиях. Чаще всего их применяют для стабилизации дисперсий и для регулирования реологических свойств.

Поверхностно-активные полимеры: способы конструирования

Полимер, обладающий поверхностной активностью, можно построить одним из трех главных способов: прививать гидрофобные цепи к гидрофильному полимерному остову (основной цепи), прививать гидрофильные цепи к гидрофобному полимерному остову либо чередовать в макромолекуле гидрофильные и гидрофобные участки. Ниже рассматриваются все три способа.

Поверхностно-активные полимеры распространены и в природе; с тремя главными типами таких соединений мы встречаемся и в растительном, и в животном мире. Роль гидрофильных участков часто выполняют заряженные или нейтральные полисахариды. Антитела (белковые молекулы) обычно содержат остатки углеводов в виде боковых цепей на большом расстоянии от области связывания антигена. Их основная функция заключается в увеличении гидрофильное этого относительно гидрофобного белка. Белки молока и слюны содержат большое количество связанных фосфатных групп и поэтому обладают высокой поверхностной активностью, прекрасно стабилизируя капли жира.

Классификация поверхностно-активных полимеров на три указанные выше группы не является исчерпывающей. На самом деле для получения определенного высокомолекулярного вещества можно комбинировать несколько (два или более) из указанных путей создания поверхностно-активных полимеров. Например, полимерная цепь поверхностно-активного полимера может состоять из чередующихся гидрофильных и гидрофобных участков, а кроме того содержать гидрофильные или гидрофобные боковые цепи. Такую молекулу можно одновременно считать блок-сополимером и привитым сополимером. Привитой сополимер может также содержать гидрофобные и гидрофильные боковые цепи.

С физико-химической точки зрения важным свойством подобных макромолекул является их способность самоориентироваться на поверхности таким образом, что гидрофильные участки оказываются в полярном окружении, а гидрофобные -- в липофильной фазе. Поверхностное натяжение раствора при этом понижается, поэтому такой полимер, по определению, поверхностно-активный.

Полимеры с гидрофильной основной цепью и гидрофобными боковыми цепями

Такой тип привитых сополимеров распространен в природе. Микроорганизмы с относительно высокими выходами производят липополисахариды. Было предпринято много попыток использования этого природного источника для получения продукта в промышленных масштабах. Хорошо известный пример такого ПАВ -- эмульсан. Это фирменное торговое название полианионного липополисахарида, производимого в качестве внеклеточного продукта бактериями Acinetobacter calcoaceticus. Гетерополисахаридный остов состоит из повторяющихся трисахаридов, несущих отрицательный заряд. Жирнокислот-ные цепи присоединены к полисахариду через сложноэфирные связи. Степень замещения и тип жирной кислоты можно варьировать. Типичная структура такого полимерного ПАВ приведена на рис. 2.

Действие тогда еще неизвестного эмульсана впервые наблюдалось при спонтанном эмульгировании сырой нефти и морской воды на морском побережье. Были выделены бактерии, производящие эмульгирующий агент. Исследования этого агента показали, что он является высокомолекулярным поверхностно-активным веществом. При более глубоком исследовании было обнаружено, что эти бактерии выделяют два поверхностно-активных компонента, участвующих в процессе эмульгирования: низкомолекулярный пептид, обладающий очень высокой поверхностной активностью и являющийся чрезвычайно эффективным эмульгатором, и липополисахарид с молекулярной массой ~106, который выполняет роль эффективного стабилизатора образующихся эмульсий. Компоненты обычно находятся в соотношении 1:9 по массе. Название «эмульсан» иногда употребляют для этой комбинации пептид-полисахарид, а иногда только для липополисахарида; далее под эмульсаном мы будем подразумевать только липополисахарид. Этот случай является хорошей иллюстрацией того, как природа использует поверхностно-активные полимеры: не для создания эмульсий, а для их стабилизации, если эмульгирование происходит под действием низкомолекулярного поверхностно-активного вещества. Действительно, полимерные ПАВ обычно не годятся для эмульгирования из-за их медленной диффузии к возникающим межфазным поверхностям.

Рис. 1. Некоторые примеры полимеров, состоящих из гидрофильной основной полимерной цепи и гидрофобных боковых групп

Рис. 2. Структура эмульсана

Ниже перечислены основные свойства эмульсана:

1) умеренно снижает поверхностное и межфазное натяжение;

2) обнаруживает ярко выраженное сродство к межфазным границам масло-вода;

3) сам по себе не является эффективным эмульгатором;

4) чрезвычайно эффективный стабилизатор эмульсий масел (но только определенных) в воде (но не воды в масле);

5) специфичен к границе раздела (субстрату) и составу водной фазы, его свойства наилучшим образом проявляются в присутствии двухзарядных катионов.

Молекулы эмульсана обладают лишь умеренной поверхностной активностью. В его присутствии межфазное натяжение, например, в системе вода-гексадекан снижается с 47 до 30 мН/м; это совсем небольшое понижение межфазного натяжения. Комбинация липополисахарида с пептидом понижает межфазное натяжение в той же системе до 14 мН/м. Эмульсан нерастворим в обеих жидких фазах (в воде и масле), поэтому его сродство к межфазной границе очень велико, что и определяет его высокую способность стабилизировать эмульсии.

Избирательность эмульсана по отношению к типу масляной фазы поразительна. Стабильные эмульсии «масло в воде» образуются только с маслами определенного состава, т.е. определенной комбинацией углеводородов. Наибольшая эффективность стабилизации эмульсий достигается для смеси алифатических углеводородов и алкиларильных соединений, что близко к составу тяжелой сырой нефти. Такой состав является субстратом, к которому должны быть адаптированы бактерии, производящие эмульсан. Выделение эмульсана бактериями -- это путь увеличения площади межфазной границы сырая нефть-вода, на которой они живут.

Большие надежды были связана с эмульгирующей способностью эмульсана. Получение высококонцентрированных эмульсий сырой нефти в воде рассматривалось, как средство превратить чрезвычайно вязкие тяжелые масла в достаточно мобильные системы, которые можно перекачивать по трубопроводам. В то время, когда разрабатывался эмульсан, эта возможность представляла особый интерес для транспорта нефти с Аляски на основную территорию США. Эмульсию сырой нефти в воде с 75%-ным содержанием нефти, получаемую с применением эмульсана в качестве стабилизатора, можно было бы сжигать без предварительного удаления воды (подобно сжиганию концентрированных суспензий угля).

Все усилия использовать эмульсан в качестве эмульгатора нефтяных эмульсий для транспорта по трубопроводам натолкнулись на непреодолимое препятствие, связанное с тем, что эмульсан подвергается ферментативному гидролизу. Разрушение стабилизатора эмульсий во время транспортировки приводило к коалесценции эмульсий, что сильно затрудняло транспорт. В настоящее время использование эмульсана значительно снизилось, он используется в основном для мытья нефтяных танков.

Эмульсан -- наиболее известный биополимер, обладающий поверхностной активностью и использующийся в промышленности. В то же время ведутся разработки путей применения и производства других липополисахаридов, выделяемых микроорганизмами (как бактериями, так и грибами). К этим исследованиям особый интерес проявляет косметическая промышленность. Процессы получения таких биологических поверхностно-активных веществ достаточно сложные и трудоемкие, а стоимость продукта относительно высока. Но следует ожидать, что в обозримом будущем разница в цене био-ПАВ и синтетических ПАВ будет сокращаться.

Природные полисахариды можно химически модифицировать, присоединяя длинные алкильные или алкиларильные цепи, и получить вещества, эквивалентные липополисахаридам. Один из возможных путей получения таких производных показан на рис. 3. В качестве исходного гидрофильного полимера взят крахмал, представляющий собой смесь линейной амилозы и сильно разветвленного амилопектина. В амилопектине можно селективно разрушить поперечные связи с помощью фермента, избирательно действующего только на 1,6-глюкозидные связи. Образующийся линейный полисахарид окисляется до альдегидов (и, возможно, до кетонов), которые затем вступают в реакцию с алифатическим амином. Степень замещения должна быть низкой (не более 10%), что легко регулируется соотношением алифатического амина и ангидроглюкозидных циклов. В противном случае возникают проблемы с растворимостью.

Рис. 3. Превращение крахмала в поверхностно-активный полимер. На схеме окисление происходит только у 6-го атома углерода ангидроглюкозидного фрагмента. В действительности окисление может приводить к раскрытию кольца между 2 и 3-м атомами углерода с образованием альдегидных групп в этих положениях. Эти альдегидные группы также подвергаются восстановительному аминированию алифатическими аминами

Аналогичный тип превращений можно провести с целлюлозой (рис. 4). Обычно целлюлозе дают набухнуть в сильной щелочи (мерсеризация); затем проводят реакцию этого полурастворенного материала с этиленоксидом и ал-килхлоридом. Если использовать короткую алкильную группу, например этильную, образующийся продукт обладает умеренной поверхностной активностью. При замене некоторого количества этильных групп на более длинные алифатические цепи получается полимер с высокой поверхностной активностью. Такие привитые сополимеры выпускаются в промышленном масштабе и называются «ассоциирующими загустителями». Они используются для придания водным композициям (например, водо-основным краскам) необходимых реологических свойств. Только небольшая доля ангидроглюкозидных циклов должна нести длинноцепочечные алкильные группы, поскольку в противном случае продукт теряет растворимость в воде. В зависимости от условий, в которых протекает реакция, гидрофобные заместители могут более или менее хаотично распределяться вдоль полисахаридного скелета. От распределения заместителей зависят физико-химические свойства продукта. Наибольшей поверхностной активностью обладают полимеры, в которых участки с высокой степенью замещения ангидроглюкозидных колец чередуются с участками с низкой плотностью замещения. Однако распределение заместителей контролировать нелегко, особенно при проведении крупномасштабного синтеза.

Рис. 4. Структура целлюлозы, которая была модифицирована этиленоксидом и ал кил хлоридом

Полимеры с гидрофобной основной цепью и гидрофильными боковыми цепями.

Природным продуктом этого класса являются гликопротеины, хотя полипептидную цепь, безусловно, нельзя считать полностью гидрофобной. Многие гликозилированные белки можно рассматривать как комбинацию привитых и блок-сополимеров, поскольку полипептидная цепь часто содержит гидрофильные и гидрофобные участки. Некоторые типы синтетических привитых сополимеров рассматриваемого типа приведены на рис. 5. В настоящее время большой интерес вызывают сополимеры с поли-этиленглколиевыми (ПЭГ) «хвостами». Они служат эффективными стерическими стабилизаторами для различных дисперсий. На рис. 6 представлены три способа получения ПЭГ-замещенных полиакрилатов.

Все три метода в принципе могут быть реализованы в промышленном масштабе. Этоксилированные мономеры (производные акрилатов) являются промышленно производимыми мономерами.

Как было отмечено выше, этот тип привитых сополимеров нашел применение в качестве стерических стабилизаторов дисперсий, в частности в производстве красок. Другое интересное применение этих поверхностно-активных полимеров состоит в модифицировании твердых поверхностей для предотвращения адсорбции белков и других биологических молекул. Полимеры этого типа адсорбируются с образованием монослоя на гидрофобной поверхности, причем адсорбция протекает исключительно за счет взаимодействия гидрофобной полимерной цепи с поверхностью, а цепи ПЭГ ориентируются к водной фразе. Уже установлено, что такой способ покрытия поверхности цепями ПЭГ эффективен для снижения адсорбции белков и, как следствие, снижения адгезии клеток к поверхности твердого тела. По опубликованным данным, полученным в опытах in vitro и in vivo, ПЭГ-покрытия заметно подавляют адсорбцию белков плазмы крови и адгезию тромбоцитов, что снижает риск тромбообразования.

Рис. 5. Некоторые полимеры с гидрофобной основной цепью и гидрофильными боковыми цепями

Рис. 6. ПЭГ-Модифицированные полиакрилаты можно получить различными путями. Верхний путь -- этоксилирование полиакрилата, содержащего вдоль цепи гидроксиэтильные группы. Средний путь -- реакция полиакрилата, содержащего сложноэфирные метальные группы, с монометиловым эфиром ПЭГ. Постоянное удаление метанола в течение реакции приводит к эффективной пере-этерификации. Нижний путь -- полимеризация этоксилированного акрилата. Этоксилированный мономер сополимеризуется с обычными мономерами, например с акриловой или метакриловой кислотами

Страницы: 1, 2



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.