на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Спектроскопия ЭПР

Спектроскопия ЭПР

АСТРАХАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

РЕФЕРАТ

на тему:

«Спектроскопия ЭПР»

Работу выполнила

студентка гр. ДХМ-311

Ажбаева А.С.

Работу проверил

д.х.н., профессор Алыков Н.М.

Астрахань 2009

СОДЕРЖАНИЕ

Введение

1. Условие ЭПР

2. Положение резонансного сигнала и g- фактор

3. Свободные радикалы в химических реакциях

4. Исследование радикалов, образующихся при облучении органических веществ. Общие замечания о возможностях метода ЭПР в этой области

Задачи

Заключение

Список литературы

Введение

В 1944 г. в Казанском университете Е. К. Завойский проводил иссле-дования парамагнитной релаксации на высоких частотах (107--108 гц) при параллельной и перпендикулярной ориентациях переменного и постоянного магнитных полей. Впервые осуществив систематическое изучение релаксации в перпендикулярных полях, он обнаружил в случае пара-магнитных солей (MnCl2, CuSO4 5H2O и т.д.) интенсивное резонансное поглощение высокочастотной энергии при строго определенных отношениях напряженности постоянного магнитного поля к частоте. Так было открыто новое физическое явление, широко известное теперь под названием электронного парамагнитного резонанса (ЭПР).

В первые годы после этого открытия метод ЭПР применялся в основном физиками для решения частных физических задач. В конце сороковых годов этот метод начал с успехом применяться для исследования тонких деталей электронной структуры парамагнитных ионов в кристаллических решетках разной симметрии. С начала пятидесятых годов началось бурное применение метода ЭПР к решению химических задач. Это связано с тем, что для современной химии имеет чрезвычайно большое значение выяснение структуры и химических свойств парамагнитных частиц, принимающих участие в сложных химических процессах. Это, с одной стороны, парамагнитные ионы металлов переходных групп периодической системы, являющиеся активными центрами огромного числа различных гетерогенных катализаторов и входящие в состав различных металлоорганических комплексов, определяющих активность сложных органических катализаторов, в том числе большинства биологических ферментов. С другой стороны, детальное исследование огромного числа сложных химических реакций в газовой и жидкой фазах, в том числе фотохимических, радиационно-химических и биохимических процессов, привело к представлению о чрезвычайно большой распространенности в химии свободно-радикальных и цепных механизмов. В большинстве случаев, и особенно в случае быстрых процессов, заключение о радикальном характере того или иного процесса в связи с трудностями непосредственного обнаружения, измерения концентраций и установления строения свободных радикалов основывалось на косвенных кинетических данных. Как будет показано ниже, метод ЭПР позволил подойти к решению обеих проблем, которые можно объединить под общим названием -- роль частиц с неспаренным электроном в химических процессах, на совершенно новом, гораздо более высоком экспериментальном и теоретическом уровне.

Метод ЭПР основан на известном эффекте Зеемана, заключающемся в том, что при введении парамагнитной частицы, характеризующейся квантовым числом S, в постоянное магнитное поле ее основной энергетический уровень расщепится на 2S + 1 подуровней, отделенных друг от друга интервалами энергии, равными

где Н -- напряженность магнитного поля;

-- единица атомного магнетизма -- магнетон Бора;

g -- фактор спектроскопического расщепления, определяющий, по существу, величину эффективного магнитного момента частицы.

1. Условие ЭПР

Электрон, обладая собственным моментом количества движения (спином) и являясь электрически заряженной частицей, имеет магнитный момент:

µe= -gµвS,

где S- вектор спинового углового момента (в единицах h =h/2р); µв- магнетон Бора (µв = ?h/(2mc) = 9,27*10-24 А*мІ; e- заряд электрона ; m- масса покоя электрона; c-скорость света); g-безразмерная величина (g- фактор Ланде), равная для свободного электрона 2,00232.

В отсутствии внешнего поля спиновые векторы ориентированны беспорядочно, то есть спиновые состояния вырождены. При наложении внешнего магнитного поля В гамельтониан взаимодействия с ним

н=­µеВ (1)

запишется в виде

н =gµВSz (2)

Ось z совпадает с направлением поля. В общем случае паромагнитной частицей (при одном или нескольких неспаренных электронах) суммарный вектор S связан со спиновым квантовым числом S известным соотношением:

|S|= (3)

а его проекция, входящая в выражение (3),

Sz =hms, (4)

где ms-квантовое число, которое может принимать значение от -S до +S (как и проекция Sz в единицах h), то есть всего (2S+1) значений.

рис. 1. Расщепление спиновых энергетических уровней электрона в зависимости от индукции внешнего магнитного поля и индуцируемый радиочастотным полем переход

рис. 2. Линия спектра поглоще-ния ЭПР (а) и кривая первой произ-водной спектра ЭПР (б) для лоренцевой формы линии

Поскольку при отрицательном заряде е отрицателен, е выбирается в уравнении (1) положительным. Для одного электрона S = 1/2 и возможны только две ориентации спинового вектора -- по полю и против поля, т. е. его проекции на направление поля характеризуются двумя значениями квантового числа ms = ±1/2.

Соответствующие энергетические состояния, или зеемановские уровни, записываются в виде

Е=gB Bms (6)

Из-за разных знаков е и n состояние с более низкой энергией взаимодействия с полем у электрона в отличие от протона соответствует ms=1/2 и обозначается волновой функцией состояния |в>. Состоянию с более высоким значением энергии соответствует ms = +1/2 и оно описывается волновой функцией |б>. Эти уровни показаны на рис. 1. Переходы между ними могут индуцироваться, как и в ЯМР, переменным радиочастотным полем, направленным перпендикулярно постоянному внешнему магнитному полю, но в частотном диапазоне на три порядка выше, чем в ЯМР, то есть в сантиметровом (миллиметровом) диапазоне длин волн.

Условием магнитного резонанса является совпадение разности энергий уровней, между которыми происходит переход, зависящий от внешнего поля B, с энергией кванта электромагнитного излучения, то есть

?E=2µeB= gB B=hv (7)

Для достижения этого условия используют обычно развертку по полю, то есть варьирование B при постоянной частоте излучения (v=const). Резонансный сигнал в спектре ЭПР обычно регистрируется в виде зависимости от напряженности поля первой производной интенсивности спектра поглощения, как это показано на рисунке 2, а, б, что позволяет лучше выявить особенности и разрешить структуру спектра.

2. Положение резонансного сигнала и g- фактор

В качестве параметра, определяющего положение линии резонансного поглощения в спектре ЭПР, можно рассматривать так называемый спектроскопический фактор расщепления Ланде или g-фактор, равный отношению электронного магнитного момента к полному угловому моменту.

В теоретической спектроскопии для свободных атомов (в газовой фазе) получено следующее выражение этого фактора:

, (8)

где S-суммарный спин (спиновое число); L-суммарный орбитальный момент; J-полный угловой момент. При рассел-саундерской спин-орбитальной (LS) связи он принимает значения от |L+S| до |L-S|.

Чисто спиновое значение g-фактора для свободного электрона (S=1/2, L=0, J=1/2) по формуле (8) получается равным g0=2, а приведенное выше более точное значение 2,00232 содержит релятивистскую поправку. Для неспаренного электрона во многих свободных радикалах g-фактор также близок к этому значению и может отличаться от него только во втором или даже третьем знаке после запятой, но вообще, например, у соединений переходных металлов и других парамагнитных систем, значения g-фактора меняются довольно в широких пределах (до нескольких единиц).

Отклонение g-фактора ?g от чисто спинового значения, обусловленное спин-орбитальной связью, может быть как отрицательным, так и положительным. Оно тем больше по абсолютной величине, чем сильнее спин орбитальное взаимодействие: возрастает, например, с увеличением порядкового номера элемента и уменьшением ?E уровней, между которыми происходит переход. Приложенное внешнее магнитное поле Ввнеш индуцирует дополнительный орбитальный момент количества движения, а орбитальное движение электрона создает в свою очередь магнитное поле Влок , равном сумме приложенного и наведенного полей Влок=В

внеш-Внавед; в этом и заключается спин-орбитальная связь. Чем больше наведенное поле, тем меньше локальное поле на спиновой системе и меньше g-фактор, а напряженность внешнего поля Ввнеш для достижения условия резонанса должно быть выше - это соответствует отрицательному отклонению (-?g) от чисто спинового значения g-фактора, как показано на рис. 20.3 для g1.

Возможна другая ситуация, например, такого распределения неспаренных электронов по разным орбиталям, что локальное поле оказывается увеличенным, то есть gi выше чисто спинового значения g0 и резонанс происходит при более низком значении Ввнеш, это соответствует положительному отклонению (+?g),как для g2 на рис.3.

Рис.3. Схема изменения g-фактора в результате спин-орбитальной связи

Таким образом, появление резонансных пиков при разных значениях индукции внешнего магнитного поля, когда развертка спектра проводится по полю при частоте, зависит, прежде всего, от g-фактора. Поскольку это так и поскольку g-фактор отражает характер спин- орбитального взаимодействия в системе, чисто формально и условно этот параметр можно сравнивать с химическим сдвигом в спектрах ЯМР, хотя информативность g-фактора ниже.

До сих пор g-фатор рассматривался как скалярная величина, но это справедливо только при рассмотрении спектров ЭПР изотропных образцов, например растворов. В общем случае g-фактор - величина тензорная, и условия резонанса зависят от ориентации паромагнитного объекта относительно поля. При свободном движении парамагнитных частиц в газе или растворе все ориентации равновероятны и происходит в усреднении, так что тензор становится сферически симметричным, то есть характеризуется единственным параметром g. То же относится к другим изотропным системам. На практике, однако, часто исследуют спектры ЭПР анизотропных систем, таких как замороженные растворы, парамагнитные центры в монокристаллах, объекты в матрицах, различные твердые образцы и другие. Во всех этих случаях g-фактор должен рассматриваться как симметричный (имеющий осевую симметрию) или асимметричный (неаксеальный) тензор. Его при соответствующем выборе системы координат всегда можно диагонализировать и получить три главных значения g-фактора: gхх, gyy, gzz.

3. Свободные радикалы в химических реакциях

Наиболее очевидным было использование ЭПР для исследования химических процессов, протекающих при участии свободных радикалов.

Как хорошо известно, свободные радикалы были открыты американским ученым Гомбергом в 1900 г., когда при исследовании реакций гексафенилэтана (Ph)3C -- C(Ph)3 ему пришлось предположить существование в качестве самостоятельного химического образования частиц (Ph)3c, обладающих трехвалентным углеродом. Предположение об образовании свободных радикалов-частиц с ненасыщенным атомом углерода позволило объяснить большое число химических фактов -- образование продуктов димеризации, ряд кинетических особенностей сложных процессов и т. д.

В 1918 г. Нернстом было высказано предположение, что свободные радикалы играют существенную роль не только в жидкофазных превращениях, но и в быстрых газовых реакциях. Было получено много косвенных доказательств этого предположения, но только в начале 30-х годов были разработаны первые прямые -- спектроскопические -- методы обнаружения радикалов в ходе химических реакций -- свободного гидроксила в зоне разреженных пламени водорода и окиси углерода.

После этого центр тяжести при исследовании роли радикалов как промежуточных продуктов при сложных химических процессах надолго перемещается в область газофазных реакций. Наряду со спектрами поглощения и излучения для этой цели начали успешно использовать масс-спектральный метод. Вопрос же об идентификации свободных радикалов в конденсированной фазе (в жидких и твердых средах) и об изучении их химических свойств до начала 50-х годов оставался практически нерешенным. Единственным источником наших сведений о строении этих частиц были косвенные химические данные, основанные на анализе конечных продуктов. Только в некоторых случаях -- при образовании радикалов в концентрациях больше 5--10% от концентрации исходных веществ--возможно пользоваться для этой цели непосредственным измерением парамагнитной восприимчивости. Последний метод не позволял, однако, сделать почти ни-аких выводов о природе парамагнитной частицы.

Положение резко изменяется после открытия метода электронного парамагнитного резонанса, позволяющего изучать радикалы в самых различных средах.

Применение метода ЭПР для исследования строения и превращения свободных радикалов в ходе химических реакций ограничивается в настоящее время чувствительностью метода.

В последнее время этот прием был применен В. Н. Панфиловым, В. В. Азатяном, А. Б. Налбандяном для доказательства образования сверхравновесных концентраций атомов водорода в пламени окиси углерода с небольшими добавками молекулярного водорода. Более того, поскольку из химического механизма горения СО следует, что в этом пламени должны образовываться очень высокие концентрации атомов кислорода, В. В. Азатян и А.Б. Налбандян поставили опыты по прямой идентификации атомов кислорода в зоне горения. Результаты этих опытов также полностью подтвердили выводы теории цепных реакций.

Страницы: 1, 2



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.