на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Особенности вулканизма и геодинамика области тройного сочленения Буве - (реферат)
p>Основные петро-геохимические группы базальтов, их пространственное распространение и геодинамические обстановки образования Проведенное исследование показывает, что в районе тройного сочленения Буве распространены очень разнообразные по составу вулканиты, среди которых преобладают базальты. Для их классификации и разделения на группы мы руководствовались следующими соображениями. К элементам, характеризующим мантийный источник первичных расплавов, относятся титан, фосфор, калий и ряд других некогерентных элементов (Nb, Zr, Y), отношения которых слабо зависят от процессов частичного плавления и фракционирования. Поэтому концентрации и отношения этих элементов являются главными критериями для подразделения вулканитов на группы. В то же время мы учитывали, что калий достаточно подвижен при подводном выветривании базальтов, поэтому породы с высоким содержанием воды не принимались во внимание при выделении групп; а поведение фосфора и титана при очень высоких степенях дифференциации определяется осаждением из расплава апатита и Fe-Ti фаз. Последнее накладывает отпечаток и на распределение таких несовместимых элементов как Nb, Zr, Y. К наиболее важным параметрам, используемым при характеристике мантийных источников, относятся изотопные отношения и распределение редкоземельных элементов в вулканитах. Мы не проводили собственных исследований в этом направлении, но в ряде случаев имеются опубликованные данные по той или иной группе пород. Вариации содержаний других элементов во многом зависят от характера дифференциации, при этом образуются дифференцированные вулканические серии, выделение которых было проведено в основном при анализе вариационных диаграмм элемент - коэффициент фракционирования (FeO/MgO). Вулканические серии образуют на диаграммах либо субпараллельные тренды, что говорит о близких условиях фракционирования, либо пересекаются друг с другом. Наличие самостоятельных трендов, характеризующих поведение того или иного элемента, также может свидетельствовать либо об особенностях состава мантийного источника, либо о различиях в условиях частичного плавления разных групп вулканитов. В частности, Клейн и Лангмюр [Klein and Langmuir, 1987] на основании изучения состава базальтовых стекол сделали вывод, что повышенные концентрации натрия в первичном расплаве указывают на более низкую степень частичного плавления мантийного источника, а повышенные концентрации железа - на большую глубину зоны генерации расплавов. Следует отметить, что на различных диаграммах тренды разных вулканических серий или групп могут совпадать друг с другом, а на других отчетливо различаться, что затрудняет однозначную идентификацию серий. Кроме того, базальты, образовавшиеся из различных по составу мантийных источников, могут иметь для отдельных элементов одинаковые тренды фракционирования. Наиболее многочисленной и наиболее распространенной в регионе ТСБ группой является группа базальтов N-MORB, главной отличительной чертой которых являются низкие концентрации литофильных элементов. Породы слабо или умеренно дифференцированы, поэтому они не дают протяженного тренда, а образуют на вариационных диаграммах компактные поля составов, располагающиеся в основании всех трендов дифференциации. Лишь на диаграмме FeO - FeO/MgO (рис.  4) базальты из этой группы формируют самостоятельный тренд с наиболее высокими концентрациями железа. Проведенные ранее исследования [Симонов и др. , 2000; Simonov et al. , 1996] показали, что данные базальты могут являться производными расплавов, генерированных при частичном плавлении мантийного субстрата под срединно-океаническими хребтами, начиная с глубин 60-70 км. В пределах изученного региона они наиболее широко распространены в рифтовой долине и на флангах САХ. В двух других спрединговых хребтах (АфАХ и АмАХ) они встречены реже (разлом Буве, угловое поднятие Конрад), хотя по данным Ле Ро [Le Roex et al. , 1983, 1985] за пределами ТСБ они широко распространены и в пределах этих хребтов. Деплетированные базальты встречены также в зонах сочленения палеоструктур САХ и АфАХ (Восточная область дислокаций). Там они сильно изменены, при этом среди вторичных минералов преобладает хлорит, и, следовательно, к поверхности дна они были выведены с более глубоких горизонтов разреза океанической коры. В зоне сочленения палеоструктур САХ, АфАХ и АмАХ базальты рассматриваемой группы слагают ряд поднятий, но в данном случае они несут признаки лишь поверхностных изменений. Единичные образцы базальтов N-MORB драгированы с нижней части поднятия Шона. Таким образом, базальты N-MORB являются фоновыми для района ТСБ. Внутри самой этой группы наблюдаются вариации содержаний ряда элементов, особенно натрия и титана, однако каких-либо закономерностей в пространственном распределении таким образом различающихся базальтов не наблюдается. Базальты из Восточной области дислокаций выделяются более низкими концентрациями СаО, что связано с широким распространением в них хлорита. Напротив, для некоторых существенно плагиоклаз-порфировых разностей из района разлома Буве свойственны повышенные концентрации СаО и особенно Al2O3. Близки по составу к базальтам предыдущей группы умеренно обогащенные толеиты типа T-MORB. Они отличаются от деплетированных разностей более высокими концентрациями литофильных элементов (K, P, Zr, Sr, Y, Nb и др. ), степень обогащения которыми варьирует. Для них также характерны и более высокие отношения некогерентных элементов Nb/Zr, La/Sm и др. Базальты T-MORB были встречены практически везде, где были описаны деплетированные базальты, но только в меньшем количестве. Их единичные образцы встречены также на хребте Шписс. Составы вулканитов, драгированных с хребта Шписс и с подводных склонов острова Буве, на вариационных диаграммах TiO2, K2O, P2O5 - FeO/MgO (рис.  2, 3, 4) в совокупности образуют единый самостоятельный, протяженный тренд, отражающий продолжительную дифференциацию, в ходе которой накапливались железо, натрий, калий и уменьшались содержания магния, кальция и алюминия. Судя по характеру тренда, концентрации железа, титана и фосфора на первых этапах фракционирования быстро возрастали, а на конечных этапах, когда в промежуточной камере происходило осаждение Fe-Ti фаз (ильменита? ) и апатита, их содержание в расплаве значительно сократилось. Несмотря на очень протяженный тренд дифференциации, содержание кремнекислоты до момента осаждения апатита и Fe-Ti фаз увеличивается не намного. Описанный характер дифференциации свойственен для толеитовых расплавов, фракционирование в которых происходит по феннеровскому типу. Среди вулканитов острова Буве существенно больше сильно дифференцированных разностей, чем в пределах хребта Шписс, что указывает на более крупные размеры промежуточного очага, существующего под вулканом Буве. В пользу этого свидетельствуют и гораздо большие поперечные размеры вулканического сооружения острова Буве. Хотя мы и объединили вулканиты острова Буве и хребта Шписс в единую серию, тем не менее между ними имеются различия. На вариационных диаграммах Na2O, Al2O3, FeO - FeO/MgO они образуют различные тренды параллельные друг другу, при этом концентрации Na2O и FeO выше, а Al2O3 ниже в вулканитах хребта Шписс при тех же самых уровнях дифференциации. Это различие свидетельствует о разнице в условиях генерации первичных расплавов для хребта Шписс и для острова Буве. На вариационных диаграммах, отображающих поведение элементов-примесей, вулканиты острова Буве имеют более высокие отношения Nb/Zr и Zr/Y, чем таковые хребта Шписс. Эта разница может быть обусловлена как различием в составе мантийного источника, так и процессами фракционной кристаллизации, так как анализировались в основном сильно дифференцированные разности. Некоторые различия между вулканитами Буве и Шписс следуют также из данных по их изотопии [Сущевская и др. , 1999; Kurz et al. , 1998]. Вулканиты острова Буве характеризуются довольно высокими содержаниями радиогенных изотопов стронция ( 87Sr/86Sr 0, 70371) и свинца ( 206 Pb/204Pb 19, 588), что резко отличает их от деплетированных базальтов, в частности, южного окончания САХ (соответственно 0, 70323-0, 70338 и 18, 037-18, 932). Вулканиты хребта Шписс имеют в основном низкие значения 87Sr/86Sr (0, 70329-0, 70336) на уровне деплетированных MORB, хотя у отдельных образцов оно более высокое (0, 70349), и промежуточные значения 206Pb/204Pb (19, 010-19, 244). В вулканитах острова Буве определены высокие значения радиоактивного гелия ( 3He/4He 12, 4), которые уменьшаются по мере удаления от острова. Повышенные значения радиоактивного гелия в вулканитах острова Буве в совокупности с высокими содержаниями радиогенных изотопов стронция и свинца в них указывают на то, что их первичные расплавы связаны с плюмом глубинной обогащенной мантии. В то же время вулканиты хребта Шписс характеризуются очень низкими отношениями 3He/4He (2, 15-7, 44), в целом даже более низкими, чем в деплетированных базальтах САХ (7, 11-7, 66) [Kurz et al. , 1998]. Таким образом, если следовать имеющимся представлениям о генетической роли изотопных и геохимических параметров, то невозможно предложить непротиворечивую модель образования вулканитов хребта Шписс. С одной стороны, содержания калия, фосфора, титана, ряда литофильных элементов-примесей в них близки к таковым в вулканитах острова Буве, плюмовая природа которых, как показано выше, подтверждается многими данными. С другой стороны, их изотопные характеристики отличаются. Изотопия стронция близка к деплетированным толеитам, изотопия свинца занимает промежуточное положение между деплетированными базальтами и вулканитами острова Буве, а для того чтобы объяснить очень низкие значения радиоактивного гелия необходимо предположение либо о разбавлении исходных расплавов компонентом, обогащенным радиогенным гелием, либо о ранней дегазации мантийного источника. В работе Н.  М.  Сущевской с соавторами [Сущевская и др. , 1999] делается интересное предположение о том, что вулканиты хребта Шписс произошли в результате плавления метасоматизированной гетерогенной мантии, образовавшейся на более раннем этапе рифтогенеза. Возможность ее сохранения в современных осевых частях спрединговых хребтов следует из сложной геодинамики раскрытия этой части Южного океана. Привлечение метасоматизированной мантии в качестве магматического источника объясняет некоторую обогащенность вулканитов хребта Шписс радиогенными изотопами и низкие значения радиоактивного гелия. Хотя идея о возможности нахождения метасоматизированной мантии в данном регионе не вызывает возражений, все же имеется ряд, прежде всего, геологических фактов, не позволяющих полностью принять эту точку зрения. Хребет Шписс начал формироваться около 2-2, 5 млн лет назад, а собственно сам вулкан Шписс около 1 млн лет назад, когда крайний отрезок АфАХ уже существовал, время начала его образования около 10 млн лет назад [Ligi et al. , 1999]. На ранних этапах существования этого сегмента АфАХ в его осевой части изливались преимущественно деплетированные базальты, о чем свидетельствуют данные по составу базальтов станций G9620 и G9621, находящихся на западном фланге этого сегмента.

Между вулканитами хребта Шписс и острова Буве существует структурная близость. И те, и другие формируют мощные поднятия, венчающиеся крупными вулканическими постройками центрального типа, под которыми существуют обширные промежуточные магматические камеры. Время начала формирования вулканических построек приблизительно одинаковое. Привлекая этот дополнительный аргумент, мы склоняемся все же к представлению о том, что мантийным источником для первичных расплавов хребта Шписс служило вещество того же плюма, что и для расплавов острова Буве. Этот плюм поднимается к поверхности по двум основным каналами, соединяющимися на глубине. Поскольку канал, центрированный под хребтом Шписс, совпадает со спрединговым центром, то в данном случае происходит смешение обогащенных расплавов с истощенными расплавами, характерными для океанского рифтового вулканизма. В пользу реальности процесса смешения расплавов, образованных из плюмовых источников, с деплетированными N-MORB свидетельствует диаграмма соотношений Zr/Y-Zr/Nb (рис.  6). Из нее можно сделать вывод о том, что не только базальты хребта Шписс, но и обогащенные базальты из рифтовых долин САХ и АфАХ являются результатом смешения, представляя разную степень смешения этих конечных компонентов. В то же время очевидно, что процессы смешения имеют очень сложный характер и не укладываются в рамки простой модели, предложенной Дж.  Шиллингом и др. [Shilling et al. , 1985]. Действительно, в вулканитах хребта Шписс содержания одних элементов (калий, титан, фосфор, хром и др. ) аналогичны таковым в плюмовых выплавках (вулканиты острова Буве), другие параметры (отношения несовместимых элементов-примесей, изотопов свинца) имеют промежуточные значения, наконец, отношения изотопов стронция и гелия близки к таковым в деплетированных расплавах. В обогащенных толеитах из рифтовой долины САХ, которые, как сказано выше, скорее всего, также являются результатом смешения расплавов из плюмового и истощенного источников, наблюдаются иные соотношения компонентов. В частности, от вулканитов хребта Шписс они отличаются меньшими концентрациями некогерентных литофильных элементов и натрия, но заметно большим содержанием магния, хрома, ванадия и скандия. Взаимодействие между плюмовым источником и источником истощенных базальтов не ограничивается только процессами смешения их расплавов. Более высокие концентрации Na2O и FeO в вулканитах хребта Шписс в сравнении с таковыми острова Буве свидетельствуют и об иных условиях частичного плавления. Не исключено, что именно с этими изменениями условий частичного плавления может быть связано вовлечение в процесс плавления метасоматизированной мантии, присутствие которой в данном районе предполагается в работе [Сущевская и др. , 1999], чем можно объяснить низкие значения 3He/4He в вулканитах хребта Шписс. Таким образом, учитывая то, что на диаграммах TiO2, K2O, P2O5 - FeO/MgO вулканиты хребта Шписс и острова Буве образуют единый тренд дифференциации, с определенным приближением их можно объединить в единую вулканическую серию. В этот же тренд попадает часть базальтов из рифтовой долины АфАХ. Однако немалая часть базальтов из рифтовой долины АфАХ составляет самостоятельную группу. Основным критерием для ее выделения послужил тот факт, что на вариационных диаграммах K2O, P2O5 - FeO/MgO (рис.  2, 3, 4) данные базальты образуют самостоятельные тренды с более высокими значениями K2O и P2O5, чем у представителей вулканической серии острова Буве при тех же самых коэффициентах фракционирования. Обособление этого тренда могло быть также следствием занижения коэффициента фракционирования из-за пониженных концентраций железа или повышенных концентраций магния в рассматриваемых базальтах в сравнении с вулканитами острова Буве. Однако по концентрации магния они не отличаются, а железо, напротив, имеет более высокие значения в базальтах данной группы и, следовательно, повышенные концентрации фосфора и калия отражают особенности состава первичных расплавов. Другим принципиальным отличием базальтов этой группы от вулканитов острова Буве являются существенно более высокие концентрации хрома в первых. Такие индикаторные отношения элементов-примесей как Nb/Zr и La/Sm у них близки к таковым у базальтов хребта Шписс. Данные по изотопии базальтов из рифтовой долины этого сегмента АфАХ в целом [Kurz et al. , 1998] показывают сравнительно высокие содержания радиогенных изотопов стронция ( 87Sr/86Sr 0, 70322-0, 70378), свинца ( 206Pb/207Pb 19, 287-19, 343) и радиоактивного гелия ( 3He/4He 8, 1-12, 9), приближающихся к таковым у базальтов с острова Буве. Поэтому было бы логично объяснить происхождение этих базальтов смешением расплавов, продуцируемых плюмом глубинной мантии, центрированным под островом Буве, и расплавов, генерированных в истощенной мантии. Но в таком случае необходимо выяснить, каким образом их первичные расплавы были дополнительно обогащены калием и фосфором. Для понимания природы этих исходных расплавов важно вспомнить, что помимо рифтовой долины АфАХ базальты, близкие по составу к рассматриваемым базальтам, встречены на линейном поднятии между вулканами Шписс и Буве, а также в Восточной области дислокаций, то есть в пределах внутриплитных структур вулкано-тектонического происхождения. Встреченные там базальты, принадлежащие к этой группе, нередко имеют аномально высокие концентрации хрома. Наши предположения заключаются в следующем. От двух основных каналов плюма глубинной мантии, локализованных под вулканами Буве и Шписс, происходит подлитосферное растекание вещества, при этом последнее более обогащено флюидами. О возможности флюидно-мантийной дифференциации вещества поднимающегося плюма свидетельствуют данные о высоком содержании воды в первичных расплавах вулканитов хребта Шписс и острова Буве [Simonov et al. , 1996], при этом при равной степени дифференциации содержание воды в базальтах рифтовой долины вблизи острова Буве существенно больше, чем таковое в гавайитах с самого острова Буве. Флюиды, по отношению к которым калий и фосфор обладают повышенным сродством, дополнительно обогащают растекающееся вещество плюмов этими элементами. Эти плюмовые дериваты могут выступать в качестве магматических источников при благоприятных условиях проницаемости: в рифтовых долинах и в зонах интенсивных внутриплитных тектонических движений. При взаимодействии образующихся расплавов, насыщенных флюидами, с веществом верхней мантии, они обогащаются хромом. В реститах широко распространена хромистая шпинель, а как показано в работе [Seyler and Bonatti, 1997], она наиболее подвержена изменениям состава при взаимодействии с основными расплавами. Процесс обогащения хромом носит очень неравномерный характер, что естественно, учитывая, что шпинель в реститах распространена неравномерно. Самостоятельную группу составов образует большая часть базальтов, поднятых на станции G9610, которая характеризует поднятие, расположенное в районе южного окончания САХ. На вариационных диаграммах K2O, TiO2, P2O5 - FeO/MgO они объединены одним трендом, косо пересекающим тренды других вулканических серий. Это достаточно протяженная дифференцированная серия базальтов, для которых при той же степени фракционирования свойственны существенно более высокие содержания фосфора в сравнении со всеми остальными группами вулканитов. Для них характерно также сравнительно высокое, на уровне вулканических серий острова Буве и хребта Шписс, содержание калия и литофильных элементов-примесей при том, что содержания таких элементов как Ce, Th, Ba, B, Sr [Сущевская и др. , 1999] существенно более высоки. Тренд составов этих базальтов отличается от трендов дифференциации типичных толеитовых расплавов тем, что в ходе дифференциации наблюдается очень слабое накопление калия, титана, фосфора и глинозема. Изотопные характеристики стекол этих базальтов [Сущевская и др. , 1999] (обр. G9610/37) резко отличаются от всех других вулканитов, встреченных в районе ТСБ и острова Буве. Основные отличия заключаются в аномально высоком значении 87Sr/86Sr (0, 70545) и высоком отношении 208Pb/204Pb (39, 23). Такие параметры характерны для вещества континентальной мантии или древней океанической коры. Мы предполагаем, что в разрезе поднятия данные обогащенные базальты слагают более глубокие горизонты, поскольку в качестве вторичных минералов в них выступает смектит, сменяясь вверх по разрезу деплетированными базальтами, содержащими только продукты поверхностного изменения (глауконит). Следовательно, обогащенные базальты характеризуют ранний этап формирования поднятия, который приходится на время соединения трех спрединговых хребтов: САХ, АфАХ и АмАХ - в одной точке 1 млн лет назад [Сколотнев, 2000]. Можно ожидать, что в силу этого, в этот период имел место чрезвычайный разогрев уже существовавшей литосферы. Вероятно, в результате этого разогрева могло произойти частичное подплавление литосферы, содержащей блоки континентальной мантии или древней океанической коры, и подмешивание расплавленного материала к истощенным расплавам N-MORB. Конечно, вопрос о происхождении блоков континентальной мантии или древней океанической коры вблизи осевых частей срединно-океанических хребтов не менее труден, чем вопрос о природе рассматриваемых базальтов. В связи с этим необходимо отметить следующее. Данный регион является чрезвычайно сложным и по строению океанского дна, и по истории его геологического развития. В ряде работ [Дубинин и др. , 1999; Пущаровский, 1998] предполагается, что АмАХ и АфАХ сравнительно недавно соединились с САХ. До этого существовали другие спрединговые центры в этом регионе, следы которых уверенно распознаются в структуре океанского дна. Очевидно, что такие глобальные перестройки геодинамического режима в данном регионе являются благоприятным фактором для сохранения блоков континентальной мантии или древней океанической коры в более молодой океанской литосфере. Наконец, самостоятельную группу составов формирует большая часть вулканитов горы Шона. Они образуют протяженную дифференцированную серию, тренд которой резко отличается от трендов других групп вулканитов. Во-первых, наиболее примитивные разности базальтов из этой группы имеют в сравнении с аналогичными базальтами из других групп крайне низкие концентрации титана и пониженные содержания фосфора. Во-вторых, по мере дифференциации происходит очень медленное накопление в расплавах титана, калия, фосфора, железа и, напротив, очень быстрое накопление кремнекислоты. Содержания K2O в них также низкие, хотя и превышают в целом таковые в деплетированных толеитах N-MORB. Все эти особенности характерны для дифференциации не толеитовых, а известково-щелочных расплавов, как известно, широко распространенных в зонах субдукции. Объединяет их с известково-щелочными магмами и наличие вкрапленников ортопироксена, повышенная железистость вкрапленников оливина (Fо72-80 ) и высокая основность вкрапленников плагиоклаза (An86-96 ). Однако имеются и существенные различия между вулканитами горы Шона и типичными вулканитами известково-щелочной серии. У первых наблюдаются заметно более высокие содержания магния и кальция и несколько более низкие - калия, натрия и алюминия, а самое главное отличие заключается в очень высоком содержании хрома, на порядок превышающее таковое у базальтов вулканических дуг. Как известно, одним из характерных признаков островодужных вулканитов является наличие ниобий - танталовой отрицательной аномалии на спайдер-диаграммах. Мы не проводили подробное изучение распределения элементов-примесей в вулканитах горы Шона, поэтому не можем однозначно утверждать присутствует ли данная аномалия в них. Вулканиты с такими составами являются уникальными для океанической коры и естественно необходимы достаточно убедительные доказательства того, что они сформировались на месте, а не являются продуктами ледового разноса, поскольку данный регион располагается в зоне распространения айсбергов. С нашей точки зрения этот каменный материал является местным. Он не несет следов ледниковой штриховки. Ближайший источник островодужного материала - Южно-Сандвичевы острова занимают ничтожную территорию, в пределах которой собственно айсберги не формируются. Антарктида же поставляет другой материал в виде ледового разноса, характерный для континентальной коры (гнейсы, граниты, песчаники и др. ), хотя в ее пределах и известны известково-щелочные вулканиты. Но более важные доказательства коренного происхождения вулканитов данного типа следуют из изучения их текстурных особенностей. Наряду с преобладающими сильно пористыми разностями, имеющими действительно необычный вид, но в целом похожими на вулканиты хребта Шписс, в их коллекции присутствуют и непористые представители, ничем не отличающиеся от типичных океанических базальтов. На абразионной вершине углового поднятия разлома Конрад обнаружены дациты, принадлежащие к этой группе, в составе брекчии с песчанистым цементом. Зерна цемента состоят из обломков такого типа вулканитов. Как было сказано выше, по ряду признаков базальты горы Шона близки к известково-щелочным сериям островных дуг, однако для окончательной идентификации необходимо более детальное изучение геохимии и изотопии этих вулканитов. Возможно, мы имеем дело с конвергенцией признаков. Тем не менее, мы рискнем высказать ряд предположений о происхождении этой вулканической серии, используя ряд имеющихся представлений о генезисе известково-щелочных пород. Основные усилия исследователей в данном направлении концентрируются на поиске удовлетворительного объяснения некоторой обогащенности первичных расплавов известково-щелочных серий легкими литофильными элементами и наличия при этом ниобий-танталовой отрицательной аномалии. Предполагается, что генерация первичных расплавов известково-щелочной серии происходит в надсубдукционной мантии, предварительно обогащенной в результате флюидного метасоматоза. Источником флюидов и литофильных компонентов, переносимых этими флюидами, является океанская кора, попавшая на большие глубины в результате субдукции. Ряд авторов [Ringwood, 1990] считают, что низкие концентрации титана, ниобия, тантала и др. обусловлены кристаллизацией рутила в качестве остаточной фазы. Другие это связывают с меньшей подвижностью данных элементов в сравнении с другими литофилами [McCulloch and Gamble, 1991], считая, что их основным источником является вещество уже деплетированной мантии. Дальнейшая эволюция расплавов и условия их дифференциации, приводящие собственно к образованию известково-щелочных серий, подробно рассматриваются Т.  И.  Фроловой [Фролова и др. , 1985]. Согласно Т.  И.  Фроловой, для формирования вулканических известково-щелочных серий необходимы три условия. Это интенсивный флюидный режим области, обстановка сжатия, при которой возникают условия для закрытости промежуточных камер, обеспечивающие в ней флюидно-магматическую дифференциацию расплава и эволюцию самих флюидов в сторону большей кислотности и окисленности, и ассимиляция расплавом субстрата базитового состава. Для понимания природы вулканитов горы Шона важно вспомнить, что аналогичные им породы эпизодически встречены в зонах сочленения палеоструктур АфАХ и АмАХ, а также АмАХ и САХ, где они участвуют в строении сложно тектонически построенных структур совместно с деплетированными базальтами. При этом, судя по тому, что они имеют более свежий облик и существенно более пористые, чем последние, вулканиты Шоновского типа слагают более верхние и молодые горизонты базальтового разреза. Некоторые из таких структур имеют отчетливую конусовидную надстройку, которая, вероятно, является вулканом. Это дает основание предположить, что вулканиты Шоновского типа являются продуктами внутриплитного вулканизма. Помимо этого данные вулканиты обнаружены на линейном поднятии между вулканами Шписс и Буве, где они ассоциируют с сильно обогащенными базальтами, аналогичными таковым в рифтовой долине АфАХ. Для объяснения природы вулканитов поднятия Шона нами предложены две гипотезы. Одна из них опирается на уже ранее сделанное предположение о подлитосферном растекании плюмового вещества, обогащенного флюидной фазой, которое может выступать в качестве мантийного источника обогащенных расплавов. Выше также указывались признаки того, что данные расплавы на уровне мантийных промежуточных камер могли быть контаминированы веществом субстрата. Наше следующее предположение заключается в том, что в обстановке сжатия при внутриплитных напряжениях магматические камеры приобретают закрытый характер, что приводит к резкому увеличению масштабов взаимодействия расплава и субстрата, коим является сильно истощенный рестит. Согласно геодинамическим построениям С.  Г.  Сколотнева [Сколотнев, 2000] вблизи тройного сочленения в пределах Южно-Американской и Антарктической плит, то есть там, где встречены вулканиты Шоновского типа, периодически возникают условия сжатия. Вполне вероятны они и при формировании горы Шона, отличающейся сложным тектоническим строением, залеганием габброидов в верхах поднятия. В результате ассимиляции реститового вещества состав расплава сильно трансформировался. Плюмовая компонента в нем была значительно ослаблена, расплав обогатился хромом и магнием, элементами, которые содержатся в большом количестве в рестите. Последующая флюидно-магматическая дифференциация расплава в условиях закрытости камеры, в силу чего флюид становился более окисленным, обусловила его эволюцию по боуэновскому типу. Раннее выпадение минералов железа и титана из расплава привело к образованию вулканической серии, схожей с известково-щелочной вулканической серией. Высокие концентрации хрома являются общим геохимическим признаком базальтов двух различных вулканических серий, совместно встреченных на линейном поднятии между вулканами Буве и Шписс. Очевидно, в соответствии с выше сказанным, в ходе становления этого поднятия режим растяжения, при котором из растекающегося плюмового вещества генерировались обогащенные расплавы, сменился режимом сжатия, при котором на состав формирующихся магм большое влияние оказали процессы ассимиляции вещества литосферы и эволюции флюидов. Следует также отметить, что о принципиальной возможности генерации низкотитанистых ортопироксен содержащих толеитовых расплавов при частичном плавлении диапиров, поднимающихся под срединно-океаническими хребтами, указывается Д.  Грином и др. [Green et al. , 1979]. По мнению данных авторов это происходит в относительно низкобарических условиях, когда диапир уже претерпевший частичное плавление при дальнейшем подъеме снова подвергается плавлению. Реальный пример такого расплава описывается в работе Данюшевский и др. [1987]. Он был обнаружен в виде расплавного включения в зерне оливина из базальтов разлома Вима и отличается от других толеитов океанических хребтов крайне низкими содержаниями титана, калия и натрия и повышенными концентрациями кремнезема и кальция. Таким образом, за исключением калия состав этого расплава в определенной степени сопоставим с наиболее примитивными разностями базальтов с горы Шона. Учитывая сказанное, мы все же придерживаемся мнения, что решающую роль в формировании вулканитов подобных таковым с горы Шона играло плавление плюмового материала, но, вероятно, оно происходило при низкобарических условиях. Другая гипотеза образования необычных вулканитов, встреченных на горе Шона, исходит из сложного геологического строения Южной Атлантики. На восточном фланге САХ в районе 15o в. д. находится отмерший срединно-океанический хребет субмеридионального простирания, ортогонально сочленяющийся на севере с Фолклендско-Агульясским разломом. Судя по имеющимся магнитным аномалиям он активно развивался в период между хронами 34 и 27 (100-60 млн лет) [La Brecque and Hayes, 1979]. Предполагается, что его отмирание произошло из-за возникновения существенно западнее новой (параллельной) зоны спрединга в пределах САХ в период между хронами 31 и 25 (68-56 млн лет). К западу от этой палеоспрединговой зоны на восточном фланге САХ (между 2o и 10o в. д. ) находится дугообразное поднятие Метеор. По своей форме и размерам оно вполне сопоставимо с островной дугой Скоша. Вероятно, это вулканическое поднятие (как и дуга Скоша) имеет островодужную природу. Его образование можно объяснить следующим образом. К западу от палеозоны спрединга располагался блок мощной консолидированной коры (Фолклендское плато). Последний препятствовал нормальному раскрытию Южной Атлантики. В результате взаимодействия (столкновения) коры, образованной к западу от палеорифта САХ и мощной коры Фолклендского плато, сформировалась зона субдукции с соответствующим вулканическим (островодужным) поднятием Метеор. В последующем, после перескока зоны спрединга существенно западнее, последняя, как и палеорифт САХ, прекратила свое существование в качестве островной дуги. К сожалению, на сегодняшний день нам не известны работы по изучению вещественного состава поднятия Метеор. Но гора Шона, учитывая состав вулканитов, встреченных на ней, может рассматриваться как один их наиболее удаленных к западу флангов позднемеловой островной дуги, разрезанной более молодыми структурами САХ.

    Обсуждение

Страницы: 1, 2, 3, 4



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.