на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Продвижение прогрессивных систем энергосбережения в Украине в сегменте (ТН) тепловых насосов
p align="left">Тепловой насос -- это термотрансформатор, преобразующий низкопотенциальную энер-гию окружающей среды, непригодную для использования в отопительных системах, в высоко-потенциальную, которая служит для отопления помещений и нагрева воды в системе ГВС. Ана-лог теплового насоса -- холодильник -- сегодня есть в каждом доме. В холодильной камере холодильник забирает тепло от продуктов питания, охлаждая их, и выбрасывает это тепло в окружающую среду через радиаторную решетку на задней стенке. А тепловой насос забирает тепло у окружающей среды и передает его в систему отопления. Британский физик Уильям Томсон,изобретатель теплового насоса, назвал его "умножителем тепла [25].

Рис.1.2. Принцип действия теплового насоса [25]

Схематично тепловой насос можно представить в виде рабочего контура, состоящего из четырех основных элементов, - испарителя, компрессора, конденсатора и сбросного клапана. К рабочему контуру примыкает первичный (внешний) контур, в котором циркулирует рабочее вещество (вода, антифриз или воздух), собирающее тепло окружающей среды, и вторичный - вода в системах отопления и горячего водоснабжения здания (рис.1.2).

Испаритель - пластинчатый теплообменник, где с одной стороны циркулирует холодный жидкий хладагент (вещество с низкой температурой кипения, обычно фреон), а с другой сторо-ны на противотоке циркулирует рабочее вещество первичного контура.

Первичный контур - это контур с низкопотенциальной тепловой энергией (энергия, температуры которой недостаточно для непосредственного нагрева отопительного контура). В качестве источника энергии первичного контура может быть использовано тепло грунта (грунтовые зонды с антифризом), грунтовых вод (две скважины: подающая и поглощающая), наружного воздуха и т.п.

В испарителе хладагент забирает тепло первичного контура, закипает и испаряется. Соответственно понижается температура выхода первичного контура.

Компрессор всасывает газообразный хладагент, сжимает его, резко повышая таким образом его температуру. Горячий газообразный хладагент выталкивается в конденсатор.

Конденсатор - по устройству такой же теплообменник, как и испаритель, где со стороны рабочего контура циркулирует горячий хладагент, а со стороны вторичного контура - вода или антифриз.

Горячий хладагент, вступая в тепловой контакт с теплоносителем системы отопления или водой из системы горячего водоснабжения (ГВС), конденсируется, передавая свое тепло системе отопления или ГВС. При этом жидкий фреон стекает на дно конденсатора, откуда за счет перепада давлений продавливается через сбросной клапан в испаритель. Температура его при этом резко понижается. После этого рабочий цикл начинается сначала.

Наиболее широкое применение тепловой насос нашёл в домашнем теплоснабжении и кондиционировании воздуха, в особенности, в США, где требуется круглогодичное кондицио-нирование: охлаждение в летние месяцы и нагрев в зимние. Реверсивный тепловой насос, реша-ющий обе задачи, выпускается уже более 30 лет, он экономичен и надежен.

По данным на 1997 год из 90 миллионов тепловых насосов, установленных в мире, 4,28 миллиона аппаратов смонтировано в Европе. Немного, по сравнению с 57 миллионами систем, имеющимися в Японии, где такое оборудование является основным в обеспечении отопления жилого фонда [26].

В Соединенных Штатах насчитывается 13,5 миллионов установленных агрегатов, а еще только развивающийся китайский рынок достиг уровня 10 миллионов систем.

Использованию ТН в мире уделяется серьезное внимание как весьма перспективному энергосберегающему направлению. Однако решение вопросов эффективности, выбора типа ТН, масштабов и областей их оптимального использования в разных странах различается и является далеко не однозначным.

Например, в Европе 77% установленных тепловых насосов используют наружный воз-дух в качестве источника тепла, хотя в Швеции, Швейцарии и Австрии преобладают тепловые насосы, забирающие тепло из грунта.

В Норвегии на конец 1999 года насчитывалось в эксплуатации 27 200 теплонасосных установок. Из вновь установленных в стране в 1999 году теплонасосных установок 67% исполь-зовали в качестве источника тепла окружающий воздух, 12% - отработавший воздух, 19% - во-ду и грунт [26].

По прогнозам мирового энергетического комитета (МИРЭК) к 2020 году в развитых странах 75% систем отопления и горячего водоснабжения будет использовать тепловые насосы. Следует отметить, что ни в одной стране фирмы-изготовители тепловых насосов не входят в рынок без специальной государственной поддержки, которая имеет разные формы льгот (нало-говые, кредитные и т.д.), которые постепенно уменьшаются по мере развития отрасли. Успехи в развитии техники теплонасосного отопления за рубежом обнадеживают отечественных энтузи-астов этого направления и сулят благоприятные перспективы [18].

Основное отличие теплового насоса от других генераторов тепловой энергии, например, электрических, газовых или дизельных котлов, заключается в том, что при производстве тепла 75% энергии берется из окружающей среды, а остальные 25% - это электрическая энергия, не-обходимая для работы компрессора теплового насоса. Тепловой насос "выкачивает" солнечную энергию, накопленную за теплое время года в окружающей среде. То есть для производства 4 кВт тепловой энергии Вам необходимо затратить всего лишь 1 кВт энергии электрической -налицосущественная экономия на оплате электроэнергии.

Соотношение вырабатываемой тепловой энергии и потребляемой электрической энергии называется коэффициентом трансформации (или КПД теплового насоса), и служит показателем эффективности его работы. Современные тепловые насосы компании Viessmann имеют высо-кий коэффициент трансформации - от 2 до 7 в зависимости от используемого источника тепло-вой энергии и применяемой системы отопления. Чем меньше разница температур между при-родным источником тепловой энергии и подачей отопительного контура, тем коэффициент трансформации больше. Это фактически означает, что 60-75% потребностей здания в тепло-снабжении тепловой насос обеспечивает бесплатно, и тепло обойдется Вам в среднем в 4,5 раза дешевле, чем при использовании электрических обогревателей.

За последние годы количество новых инсталлированных тепловых насосов (ТН) с элек-трическим приводом возрастало весьма и весьма динамично. С одной стороны, это обусловлено тем, что ТН (тепловой насос) особенно хорошо выполняет требования законодательства по энергосберегающей технике, и, с другой стороны, тем, что с точки зрения комфорта и эксплуа-тационных расходов ТН (теплового насоса)обладает существенными преимуществами в сравне-нии с обычными системами отопления.

Рис.1.3. Структура бытового теплопотребления населения [18]

В суммарном энергопотреблении для жилых домов доля тепловой энергии играет решающую роль: 86 % потребности в энергии частных домашних хозяйств приходится на отопление и приготовление горячей расходной воды и покрывается большей частью за счёт газа и нефти. Так как наличие этих ископаемых энергоносителей ограничено во времени, то требуются альтернативные источники энергии. В этой связи регенеративные, или возобновляемые энергии - в частности ТН (тепловой насос) - сыграют в будущем важнейшую роль. И особенно потому, что в наших широтах для них совпадают предложение и спрос, что лишь с большими оговорками можно сказать об использовании солнечной энергии.

Назначение теплового насоса - точно так же, как вода не течёт вверх, тепло всегда пере-текает только от горячего (источник тепла) к холодному (приёмник тепла). Таким образом, что-бы использовать для отопления и ГВС низкопотенциальное тепло из окружающей среды, т.е. из грунта, воздуха или из грунтовых вод, необходимо это тепло "перекачать" на более высокий уровень. Контур хладагента позволяет "качать" тепло на более высокий температурный уро-вень. Сердцем ТН (теплового насоса) является циркуляционный контур хладагента, работаю-щий с помощью компрессора. По принципу конструкции он идентичен контуру хладагента холодильников, испытанных временем и практикой использования, и поэтому также сопос-тавим с ними по показателю высокой надёжности. Лишь выполняемая задача у него полностью противоположна, а именно: внутри холодильника тепло отбирается у охлаждаемых продуктов и отдаётся с тыльной стороны аппарата в помещение, а ТН (тепловой насос) отбирает тепло из окружающей среды (воды, земли, воздуха) и передаёт его в отопительную систему.

Принцип функционирования теплового насоса приведен на рис.1.4

Рис.1.3. Принципиальная тепловая схема работы теплового насоса [29]

В закрытом контуре происходит поочерёдное испарение, сжатие, конденсация (сжижение) и расширение рабочего вещества - хладагента, закипающего уже при невысокой температуре.

1.Испаритель - в испарителе находится жидкий хладагент низкого давления. Его темпе-ратура ниже, чем температура источника тепла. Поэтому тепло от источника тепла передаётся хладагенту, что приводит к испарению хладагента.

2.Компрессор - газообразный хладагент сжимается в компрессоре до высокого давления и при этом настолько сильно нагревается, что температура хладагента после компрессии ста-новится выше температуры, необходимой для отопления и ГВС. Кроме того, энергия привода компрессора тоже преобразуется в тепло и "перетекает" к хладагенту.

3.Конденсатор - очень горячий хладагент высокого давления отдаёт в конденсаторе всё своё тепло, то есть тепло, полученное от источника тепла, а также тепло энергии привода компрессора в систему отопления (перепад тепловых потенциалов). При этом хладагент сильно охлаждается и снова становится жидким.

4.Расширительный клапан - затем хладагент проходит через расширительный клапан и снова возвращается в испаритель. В расширительном клапане происходит декомпрессия до первоначального давления. Цикл завершился.

Режимы эксплуатации тепловых насосов - ТН(тепловой насос) для отопления помещений - в зависимости от типовых условий - могут эксплуатироваться самыми разнообразными способами. Выбор того или иного режима работы должен ориентироваться, прежде всего, на уже имеющиеся в здании или планируемые системы отдачи тепла и на выбранный источник тепла:

1). Моновалентный режим

О моновалентном режиме эксплуатации речь идёт тогда, когда ТН(тепловой насос) покрывает всю потребность в тепле для отопления и ГВС. Оптимальными для этого являются такие источники тепла, как грунт и грунтовые воды, так как эти источники тепла почти незави-симы от наружной температуры и поставляют вполне достаточно тепла даже при низких тем-пературах.

2). Бивалентный режим

В бивалентном режиме, наряду с ТН(тепловым насосом) всегда применяется второй теплогенератор, чаще всего - уже имеющийся жидкотопливный котёл. В прошлом для одно- и двухсемейных домов этот вид эксплуатации имел огромное значение, прежде всего - в сочета-нии с воздушно-водяным ТН(тепловым насосом). При этом основное теплоснабжение выпол-нялось ТН(тепловым насосом), а, начиная с наружной температуры, например, ниже 0°C, к работе подключался жидкотопливный котёл. Из экономических соображений - поскольку всегда требуется два теплогенератора - такие системы сейчас не получают широкого распространения и реализуются лишь в отдельных редких случаях.

По виду теплоносителя во входном и выходном контурах насосы делят на шесть типов: "воздух--воздух", "воздух--вода", "вода --воздух", "вода--вода", "ЗЕМЛЯ--воздух", "ЗЕМЛЯ--вода". Найбольшее распространение в наших широтах получило два вида тепловых насосов,а именно: "воздух--вода","земля--вода".

а) Тепловые насосы воздух-вода

Тепловые насосы "воздух-вода" используются в 2 -х схемах(рис.1.7):

1. Забор воздуха в подвале дома.

2. Забор воздуха через внешние выносные сплит-модули.

Источник тепла: воздух. Тип теплового насоса: воздух/вода

Воздух - наименее затратный источник тепла в плане освоения - имеется в неограниченном количестве, его "разработка" не требует проведения дополнительных работ. Современные тепловые насосы воздух/вода можно эксплуатировать почти круглый год (до -15єС). При более низкой температуре окружающего воздуха установка не покрывает теплопотребность здания, и ее необходимо использовать в сочетании с другим источником тепла или электро-нагревательной вставкой в бойлере. В случае использования теплового насоса воздух/вода расчет параметров источника тепла задается конструкцией или размером установки. Требуемое количество воздуха подается вентилятором, встроенным в установку, на испаритель через воздушные каналы.

Рис.1.7. Варианты установки теплового насоса "воздух- вода" [32]

Воздушно-водяные тепловые насосы могут с технической точки зрения точно так же, как геотермические тепловые насосы, эксплуатироваться круглогодично. Для этого в моновалентном режиме при проектных условиях, например, при -15 ?C наружной температуры тепловой насос должен обеспечивать максимальную "греющую" мощность. Так как "греющая" мощность сильно уменьшается с падением температуры источника тепла, то это довольно часто обусловливает необходимость применения больших агрегатов и высоких инвестиционных затрат. Поэтому для работы воздушно-водяных тепловых наосов, как правило, начиная с некоторой определённой температуры наружного воздуха, подключают параллельно работающий дополнительный термоэлектрический нагреватель. В холодные дни он покрывает пиковую нагрузку. Однако из-за большой разницы температур в холодные дни и из-за низких коэффициентов мощности воздушно-водяного тепловой насос, обусловленных этой разницей температур, получаются существенно меньшие значения годовых коэффициентов эффективности в сопоставлении с геотермическими тепловыми насосами. Поэтому воздушно-водяные тепловые нас-сы пригодны особенно для регионов с относительно высокими наружными температурами в середине года или в уже построенных одно- и двухсемейных домах, для которых потребовались бы существенные затраты на инженерно-техническое освоение грунтового источника тепла.

Использование тепла из отработавшего воздуха помещений для эксплуатации теплового насоса возможно с помощью специального приточно-вытяжного оборудования для отработавшего воздуха. При этом главный агрегат такого оборудования следует инсталлировать по возможности на чердачном этаже здания и вытягивать воздух встроенным вентилятором из кухни, ванной комнаты и туалета. За счёт вытяжки создаётся разрежение в квартире, и наружный воздух может свободно поступать внутрь помещений сквозь специальные отверстия в наружной стене. В главном агрегате, т.е. в коллекторе для отработавшего воздуха помещений находится теплообменник, который отбирает тепловую энергию из отработавшего воздуха, прежде чем отвести его за пределы здания. Это тепло подводится через теплообменник в систему ТНУ и обусловливает непосредственное повышение коэффициента мощности теплового насоса во время эксплуатации, так как теплоноситель предварительно подогревается коллектором. При остановке теплового насоса энергия накапливается в источнике тепла и обеспечивает его регенерацию.

В таком режиме коллектор использует избыточное тепло из отработавшего воздуха помещений для поддержания контура теплового насоса.

Применение коллектора отработавшего воздуха помещений предполагает точное планирование вентиляционной установки и особую герметичность ограждающих конструкций здания. После монтажа агрегата необходимо провести тестирование дома на герметичность.

б) Тепловые насосы земля-вода

Тепло из грунта можно получать по-разному. Специалисты подразделяют здесь источники тепла, использующие тепловую энергию приповерхностных слоёв грунта, и источники, использующие глубинное геотермическое тепло.

Приповерхностное тепло - это солнечное тепло, накапливаемое грунтом сезонно и используемое с помощью так называемых геотермических грунтовых коллекторов, которые укладываются горизонтально на глубине от 1,20 м до 1,50 м.

Геотермическое тепло стремится из глубины земных слоёв к поверхности и используется с помощью геотермических зондов. Зонды инсталлируются вертикально на глубину до 150 м.

Обе системы характеризуются высокой и относительно стабильной температурой в течение всего года. Это обусловливает высокие к.п.д. во время эксплуатации теплового насоса (высокий годовой коэффициент эффективности). Кроме того, эти системы работают в закрытых контурах, что обеспечивает высокую надёжность и минимальные затраты на обслуживание. В таком закрытом контуре циркулирует смесь воды и антифриза (этиленгликоля). Эту смесь называют также "рассолом".

Существуют два вида тепловых насосов "земля-вода":

1. Грунтовые коллекторы (рис.1.5б)

2. Грунтовые зонды(рис.1.5а)

Рис.1.5. Схема теплового насоса "земля - вода" с грунтовым вертикальным зондом (а) и грунтовым вертикальным коллектором(б) [32]

Действие земляного зонда

Рис.1.6. Действие земляного зонда [32]

Действие земляного коллектора

Рис.1.7. Действие земляного коллектора [32]

Источник тепла: грунт. Тип теплового насоса: рассол/вода.

Грунт хорошо аккумулирует солнечную энергию. Она воспринимается грунтом либо непосредственно в форме солнечной радиации, либо косвенно в форме тепла, получаемого от дождя или из воздуха. Грунт имеет свойство сохранять солнечное тепло в течение длительного времени, что ведет к относительно равномерному уровню температуры источника тепла на протяжении всего года. Также на глубинах больше 20 метров происходит поступление тепла от центра земли и каждые 100 метров температура грунта увеличивается на 3єС, что обеспечивает эксплуатацию теплового насоса с высоким КПД. Аккумулированное грунтом тепло передается вместе со смесью из воды и антифриза (рассолом), через горизонтально проложенные грунтовые теплообменники (грунтовые коллекторы) или через вертикально расположенные теплообменники (грунтовые зонды).

1. Преимущества тепловых насосов "земля-вода" с грунтовыми коллекторами:

- экономически выгодные затраты;

- высокие годовые коэффициенты эффективности теплового насоса.

Недостатки тепловых насосов "земля-вода" с грунтовыми коллекторами:

- важная роль точности укладывания, проблемы с образованием воздушных "мешков" в случае неквалифицированного укладывания;

- потребность в большой технологической площади;

- невозможность перестройки.

Отбор тепла из грунта производится с помощью пластиковых труб большой площади, уложенных параллельно поверхности земли, как правило, в виде нескольких контуров. При этом один контур по своей длине не должен превышать 100 м, так как иначе потребуется слишком высокая мощность качающего насоса. Отдельные контуры подключаются к распределителю, который должен находиться в самой высокой точке, чтобы обеспечить возможность развоздушивания системы трубопроводов. Временное оледенение грунта не имеет никаких негативных последствий на функционирование ТНУ и на растительное покрытие технологической площади. По возможности необходимо следить за тем, чтобы на площади, занимаемой грунтовым коллектором, не располагались растения с глубокой корневой системой. Важно также, чтобы трубы укладывались в песчаной постели для предотвращения вероятных повреждений острыми камнями. Прежде чем выполнять засыпку коллектора, обязательно рекомендуется опрессовать систему трубопроводов. Лучше всего держать трубопровод под испытательным давлением также и во время засыпки. Тогда очень легко сразу заметить вероятные повреждения. Выполнение требуемых перемещений грунта возможно без больших дополнительных затрат в особенности на новостройках. Величина отбора тепловой мощности из грунта зависит от многих факторов, прежде всего - от влажности грунта. Особенно хороший практический опыт получен при работе с влажными суглинками. Менее пригодными являются песчаные грунты.

2. Преимущества теплового насоса "земля - вода" с грунтовым зондом:

- надёжность;

- незначительная потребность в занимаемой технологической площади;

- высокие годовые коэффициенты эффективности теплового насоса.

Недостатки теплового насоса "земля - вода" с грунтовым зондом:

- как правило, высокие инвестиционные затраты;

- инсталляция возможна не во всех регионах.

Грунтовые зонды получили за последние годы очень широкое распространение благодаря простоте обустройства и незначительной потребности в технологической площади. Такие зонды состоят, как правило, из пучка четырёх параллельных пластиковых труб, концы которых свариваются специальными фасонными деталями и образуют так называемую ножку зонда. При этом каждые две пластиковые трубы соединяются так, что создают два независимых один от другого контура. Их называют также двойными U-образными зондами. При наличии хороших гидрогеологических условий можно реализовать высокую мощность отбора тепла. Предпосылкой для планирования и обустройства грунтовых зондов служит точная информация о характерных свойствах грунта и информация о внутригрунтовых процессах. В настоящее время уже есть целая сеть фирм, которые специализируются в области обустройства грунтовых зондов и, наряду с проектированием и инсталляцией зондов, предлагают также разрешительную документацию. Можно также обратиться за профессиональной консультацией к специалистам-геологам или в местный геологический департамент.

Тепловые насосы "вода-вода" используются в 2 -х схемах:

1. Грунтовые воды;

2. Открытые водоемы.

Рис.1.8. Схема теплового насоса "вода - вода" с использованием грунтовых вод [31]

Источник тепла: грунтовые воды. Тип теплового насоса: вода/вода

Грунтовые воды - хороший аккумулятор солнечного тепла: даже в холодные зимние дни они сохраняют постоянную положительную температуру. Для использования тепла необходимо пробурить подающую и поглощающую скважины, строго учитывая при этом направление те-чения подземных вод и их качество. Для работы тепловых насосов при определенных условиях могут использоваться озера и реки, т.к. они тоже выступают в роли аккумуляторов тепла.К со-жалению, не везде имеется достаточное количество грунтовых вод надлежащего качества. К то-му же на использование грунтовых вод должно быть получено разрешение соответствующего ведомства (обычно службы госводонадзора).

Преимущества теплового насоса "вода - вода" с использованием грунтовых вод:

- экономически привлекательный источник тепла;

- незначительная потребность в технологической площади.

Недостатки теплового насоса "вода - вода" с использованием грунтовых вод:

- открытая система;

- затраты на обслуживание;

- требуется анализ грунтовых вод;

- обязательное наличие разрешительной документации.

Использование грунтовых вод путём их отбора через колодезную установку и последующего возврата в водоносные слои грунта является особенно выгодным с энергетической точки зрения. Практически константная температура воды в течение всего года позволяет достичь высоких значений коэффициента мощности ТН(теплового насоса). Особое внимание при этом необходимо уделять потребности во вспомогательной энергии, особенно электроэнергопотреблению качающего насоса. В небольших ТНУ или при значительных глубинах укладки зондов предполагаемые энергетические преимущества очень часто "съедаются" дополнительными затратами энергии качающих насосов и нередко приводят к существенному влиянию на годовой коэффициент эффективности.

Кроме того, при разработке источника тепла "Грунтовые воды" следует помнить, что речь здесь идёт об открытой системе, которая зависит от качества воды, расхода воды и т.д. Поэтому решение о применении того или иного ТН (теплового насоса) для работы с грунтовыми водами необходимо особенно тщательно обдумывать и взвешивать.Прежде всего, следует проверить, есть ли в выбранной Вами местности достаточное количество грунтовых вод на глубине макс. 20 м. Об этом можно узнать у местной администрации по управлению водными ресурсами, у городского предприятия водоснабжения или у местных бурильно-монтажных фирм по обустройству артезианских колодцев.Затем необходимо получить разрешение местной администрации по управлению водными ресурсами на отбор и возврат грунтовых вод для целей отопления. Планирование и исполнение работ по обустройству колодезной, т.е. скважинной установки должно выполняться квалифицированным бурильно-монтажным предприятием, так как непрофессиональное исполнение может привести в течение нескольких лет к существенным отложениям железо-магниевых окислов именно в поглощающем, т.е. насыщающем колодце. Для устранения такого повреждения потребуются очень значительные затраты. К тому же во время проведения ремонтно-восстановительных работ эксплуатация ТНУ невозможна,так что при наличии моновалентной ТНУ нельзя обеспечить отопление здания.

Страницы: 1, 2, 3



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.