на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Билеты: Билеты по геометрии (11 класс)
Подставив сюда выражения для ab, |а|и|b| через координаты векторов а и b получим эту формулу. Для любых векторов а,b и c и любого числа k справедливы равенства: 10.а2 ³) , причем а2>0 при а¹0 20.ab=ba(переместительный з-н) 30.(a+b)c=ac+bc(распределительный з-н) 40.k(ab)=(ka)b (сочетательный з-н) Утверждения 1⁰-4⁰относятся и к планиметрии Нетрудно док-ть , что распределительный з-н имеет место для любого числа слагаемых( (a+b+c)d=ad+bd+cd.)

Билет № 12

1. Прямая и правильная призма(формулировки примеры) 2. Существование плоскости , проходящей через данную прямую и данную точку. 1.Если боковые ребра перпендикулярны основаниям, то призма нвзывается прямой, в противном случае наклонной. Высота прямой призмы равна ее боковому ребру. Прямая призма называется правильной, если ее основания- правильные многоугольники. У такой призмы все боковые грани – равные прямоугольники. 2. Теорема. Через прямую и не лежащую на ней точку проходит плоскость, и приом только одна . Д-во. Рассмотрим пр а и не лежащую на ней т М. Отметим на прямой а 2 точки Р и Н Точки М,Р и Н не лежат на одной прямой поэтому согласно аксиоме А1 через эти 3 точки проходит пл a. Т.к. 2 точки прямой РиН лежат в пл a., то по аксиоме А2 пл a.проходит через прямую а.Единственность пл, проходящай через прямую а и т М, => из того, что любая пл., проходящая через пр а и т М, проходит через т М, Р и Н .=>, она совпадает с пл a., т.к по аксиоме А1через 3 точки проходит только одна плоскость. Билет № 13 1. Параллелепипед. Прямоугольный параллелепипед(формулировка примеры) 2. Теорема о боковой поверхности призмы. 1. Прямоугольный параллелепипед. Параллелепипед называется прямоугольник, если его боковые ребра ^к основанию, а основания представляют собой прямоугольники: коробки, ящики, комнаты к т. д. прямоугольный параллелепипед ABCD A1B 1C1D1.Его основаниями служат прямоугольники ABCD и A1B1C1D1 a боковые ребра АА1, ВВ1, СС1 и DD 1 ^ к основаниям. Отсюда=>, что АА1^АВ, т. е. боковая граyь АА1В1В — прямоуголь-ник. To же самое можно сказать и об остальных боковых гранях. Та-ким образом, мы обосновали следующее свойство прямоугольного параллелепипеда: 1°. В прямоугольном параллелепипеде все шесть граней прямоугольники. Полупл, в кот расположены смежные грани парал- да, образуют двугранные углы, кот называются двугранными углами параллелепипеда. 2°. Все двугранные углы прямоугольного параллелепипедапрямые. Длины трех ребер, имеющих общую вершину, назовем измерениями прямоугольного парал-да. Например, у парал­-да, можно взять длины ребер АВ, AD и АА1.Длины смежных сторон можно назвать измерениями прямоугольника и поэтому можно сказать, что квадрат диагонали, прямоугольника равен сумме квадратов двух его измерений. 2. Теорема: S боковой поверхности прямой призмы равна произведению периметра основания на высоту призмы. Д-во. Боковая поверхность прямой призмы – прямоугольники , основания которых- стороны основания призмы, а высота равна h призмы. S боковой поверхности призмы равна сумме произведений указанных прямоугольников, т.е. равна сумме произведений сторон основания нв высоту h. Вынося множитель h за скобки получим в скобках сумму сторон основания призмы, т.е его периметр P. Итак Sбок=Ph S=AB•h+BC•h+CA•h=h(AB+BC+CA)=Ph Билет № 14 1. Пирамида(формулировка , примеры) 2. Существование прямой, параллельной данной прямой и проходящей через данную точку. 1. Пирамида. Рассмотрим многоугольник А1А2.Аn и точку Р не лежащую в плоскости этого многоугольника . Соединив т. Р отрезками с вершинами многоугольника, получим n треугольников РА1А1, РА2А3.,РаnА1. Многоугольник, составленный из n –угольника А1А2.Аn и n тре-угольников , называется пирамидой. Многоугольник А1 А2.Аn назы-вается основанием, а треугольники- боковыми гранями пирамиды. Т.Р называется вершиной пирамиды , а отрезки РА1,РА2, ., РАn – её боковыми ребрами . Пирамиду с основанием А1А2,.Аn и вершиной Р обозначают так: РА1А2.Аn –и называют n –угольной пирамидой. Треугольная пирамида называется тетраэдр. Перпендикуляр , проведенный из вершины пирамиды к плоскости основания , называют высотой пирамиды (РН) Площадью полной поверхности пирамиды называют сумму площадей её граней , а площадью боковой поверх-ности – сумму площадей её боковых граней 2. Т е о р е м а. Через любдю точку пространства, не лежащую на данной прямой, проходит прямая, параллелькая данной, и притом только одна. Д-во. Рассмотрим прямую a и т М, не лежащую на этой прямой. Через прямую a и т М проходит пл, и притом только одна . Обозначим эту плоскость буквой α. Прямая, проходящая через точку М параллельно прямой а, должна лежать в одной плоскости с т М и прямой а, т. е. должна лежать в плоскости α. Ho в плоскости α, как известно из курса планиметрии, через т М проходит прямая, параллельная прямой а, и притом только одна. Эта прямая обозначена буквой b. Итак, b — единственная прямая, проходящая через т М параллельно пря­мой а. Теорема доказана. Билет № 15 1. Цилиндр (формулировки и примеры) 2. Признак параллельных прямых. 1. Цилиндр. Рассмотрим две параллельные плоскости α и β и окружность L с центром О радиуса r , расположенную в пл α. Отрезки прямых заключенных между плоскостями образуют цилиндрическую поверхность. Сами отрезки называются образующими цилиндрической поверхности По построению концов образующих расположенных в пл β заполним окружность L1. Тело ограниченное цилиндрической поверхностью и двумя кругами с границами L и L1 , называется цилиндром. Цилиндрическая поверхность называется боковой поверхностью цилиндра, а круги - основаниями цилиндра . Образующие цилиндрической поверхности называются образующими цилиндра , прямая ОО1- осью цилиндра. Цилиндр может быть получен вращением прямоугольника вокруг одной из его сторон. Сечение цилиндра , проходящее через ось , представляет собой прямоугольник , две стороны которого образующие , а 2 другие –диаметры оснований цилиндра , такое сечение называется осевым. Если секущая плоскость ⊥ к оси цилиндра , то сечение является кругом. Цилиндры так же могут быть и наклонными или иметь в своем основании параболу . Параллельность прямых а и b обозначается так: а||b. Докажем теорему о параллельных прямых. Т е о р е м а. Через любдю точку пространства, не лежащую на данной прямой, проходит прямая, параллелькая данной, и притом только одна. Д-во. Рассмотрим прямую a и т М, не лежащую на этой прямой. Через прямую a и т М проходит пл, и притом только одна . Обозначим эту плоскость буквой α. Прямая, проходящая через точку М параллельно прямой а, должна лежать в одной плоскости с т М и прямой а, т. е. должна лежать в плоскости α. Ho в плоскости α, как известно из курса планиметрии, через т М проходит прямая, параллельная прямой а, и притом только одна. Эта прямая обозначена буквой b. Итак, b — единственная прямая, проходящая через т М параллельно пря­мой а. Теорема доказана. Билет №16 1. Конус (формулировки и примеры) 2. Признак параллельности прямой и плоскости 1.Конус. Рассмотрим окружность L с центром О и прямую ОР , перпендикулярную к плоскости этой окружности. Каждую точку окружности соединим с отрезом в т. Р Поверхность, образованная этими отрезками называется конической поверхностью а сами отрезки – образующими конической поверхности. Тело, ограниченное конической поверхностью и круг-ом с границей L, называется конусом .Коническая по-верх называется боковой поверхностью конуса, а круг - снованием конуса . Т.Р называется вершиной конуса , а образующие конической поверхности – образующими конуса. Все образующие равны друг другу . ОР , прохо-дящая через центр основания и вершину , называется Осью конуса . Ось конуса ⊥ к плоскости основания. Отрезок ОР называется высотой конуса. Конус можно получить и вращением прямоуголь-ным треугольником вокруг одного из его катетов. При этом боковая поверхность образуется с помо-щью гипотенузы. Рассмотрим сечения конуса. Если секущая ось проходит через ось , то сечение пред-ставляет собой треугольник , и называется осевым сечением. Если секущая плоскость ⊥ к оси ОР конуса, о сечене пред-ставляет собой круг с центром в т.О1 , расположенным на оси конуса. R1 этого круга равен РО1/РО r , где r- радиус основания конуса , что легко усмотреть из подобия △РОМ∾△РО1М 1 2.Определение. Прямая и плоскость называются параллельными, если они не имеют общих точек. Теорема. Если прямая , не лежащая в даннойц плоскости, палаллльна какой-нибудь прямой , лежащей в этой плоскости, то она параллнльна данной плоскости. Д-во. Рассмотрим пл.αи 2║прямые a и b , расположенные так, что прямая b лежит в пл α, а прямая a не лежит в этой пл. Докажем, что α║a. Допустим, что это не так, тогда прямая a пересекает пл α , а значит по лемме о пересечении пл параллельными прямыми пр b так же пересекает пл α . Но это невозможно , так как пр b лежит в пл α. Итак пр a не пересекает пл α, поэтому она ║этой плоскости. Билет № 17 1. Сфера, шар( формулировки, примеры) 2. Признак параллельности плоскостей. Определение. Сферой называется поверхность, состоящая из всех точен. пространства, расположенных на данном расстоянии or данной точки Данная точка называется центром сферы (т О), а данное расстояние — радиусом сферы. Радиус сфе­ры часто обозначают буквой R Люб-ой отрезок, соединяющий центр и какую-нибудь точку сферы, также называется радиусом сферы.Отрезок, соединяю­щий две точки сферы и проходящий через ее центр, называет­ся диаметром сферы. Очеви-дно, диаметр сферы равен 2R Отметим, что сфера может быть полу-чена вращением полуокружности вокруг ее диаметра Тело, ограни-ченное сферой, называется шаром. Центр, радиус и диаметр сферы называются также центром, радиусом и диаметром шара. Очевидно, шар радиуса R с центром О содержит все точки пространства, кот. Расположены от точки О на расстоянии, не превышающем H (вклю-чая и точку О), и не содержит других точек. 2.Теорема. Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым, другой плоскости, то эти плоскости праллельны. Д-во. Рассмотрим две плоскости α и β. В плоскости α лежат пересека-ющиеся в точке М прямые a и b, а в плоскости β — прямые a1 и b\, причем a||a1 и b||b1. Докажвм, что a||b. Прежде всего отметим, что по признаку параллельности прямой и плоскости a||β и b||β. Допустим, что плоскости α и β не параллельны. Тогда они пересекаются по некоторой прямой с. Мы получили, что плоскость a проходит через прямую а, па-раллельную плоскости β, и пересекает плоскость по прямой с. Отсюда следует, что a||с. Но плоскость a проходит также через прямую b, параллель­ную плоскости β. Поэтому b||c. Т.о, через т М проходят две прямые a и b , параллельные прямой с. Но это невозможно, т.к по теореме о параллельных прямых через точку М проходит только одна прямая, параллельная прямой с. Значит, наше допущение неверно и α|| β. Теорема доказана.

Билет № 18

1.Формула прямоугольногопараллелепипеда. (формулировка и пример) 2. Свойства перпендикулярности прямой и плоскости( доказательство одного из них) 2. Определение. Прямая называется перпендикулярной к плоскости , если она перпендикулярна к любой прямой , лежащей в этой плоскости. Теорема. Если одна из 2-ух параллельных прямых перпендикуляр-на к плоскости, то и другая прямая перпендикулярна к этой плос-кости. Д-во. Рассмотрим 2 ║а и а1 и пл α, такую, что а^α. Докажем, что и а1^α.. проведем какую-нибудь прямую х в пл α. Так как а^α, то а^х. По лемме о перпендикулярности 2-ух параллельных прямых к третьей а1^х. Т.о. прямая а1 ^ к любой прямой , лежащей в пл a т.е а1 ^α. Теорема. Если 2 прямые перпендикулярны к плоскости , то они параллельны.

Билет №20

1. Фрмула обьема шара( формула примеры) 2. Теорема о трех перпендикулярах 1. Теорема: Объем шара радиуса R равен 4/3 pR3 Д-во: Рассмотрим шар радиуса R с центром в т.О и выберем ост Ох произвольным образом. Сечение шара пл. ^к оси Ох и проходящей через т М этой оси является кругом с центром в т М. Обозничим радиус этого круга r , а его площадь S(x), где х- абсц-исса т М. Выразим S(х)через х и R.Из прямоуголь-ника ОМС находим: r=ÖOC2 –OM2 =ÖR 2-x2.Так как S(x)=pR2 ,то S(x)= p(R2- x 2). Заметим , что эта фор-мула верна для любого положения т.М на диаметре АВ, т.е. для всех х, удовлетворяющих условию -R£ x £R. Примеряя основную формулу для вычисления объемов тел при а= -R, b=R, получим
V R R R R

px3

R4

=∫p(R2-x2)dx= pR2∫ dx-p∫x2dx=pR2x½-

½=

pR3

33
-R -R -R -R-R
2.Теорема. Прямая проведенная в плоскости через основание наклонной перпендикулярно к её проекции на эту плоскость, перпендикулярна и к самой наклонной. Д-во. Дана пл α и перпендикуляр АН , АМ- наклонная, а- прямая, проведенная в пл α через т м ^ к проекции НМ наклонной. Докажем , что а ^АМ. Рассотрим пл АМН. Пр.а ^к этой пл, т.к она ^ к 2-ум пересекающимся прямым АН и МН(а ^ НМ по условию и а ^АН, т.к. АН^ α). Отсюда =>, что пр а ^ к любой прямой , лежащей в пл АМН, в частности а^АМ Обратная теорема. Прямая проведенная в плоскости через основание наклонной перпендикулярно к ней перпендикулярна и к её проекции

Страницы: 1, 2



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.