на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Курсовая: Двойственный симплекс-метод и доказательство теоремы двойственности
Оптимальный план исходной задачи X* = (0; 1/3; 0; 11/3; 4; 0), при котором Zmin = - 46/3, получен в четвертой итерации табл. 1.2. Используя эту итерацию, найдем оптимальный план двойственной задачи. Согласно теореме двойственности оптимальный план двойствен­ной задачи находится из соотношения Y* = C*D-1, где матрица D-1 - матрица, обратная матрице, составленной из компонент векторов, вхо­дящих в последний базис, при котором получен оптимальный план исходной задачи. В последний базис входят векторы A5, A4, A2 ; значит, Курсовая: Двойственный симплекс-метод и доказательство теоремы двойственности 1 -1 2 D = (A5, A4, A2) = -1 2 -4 1 0 3 Обратная матрица D-1 образована из коэффициентов, стоящих в столбцах A1, A3, A6 четвертой итерации: Курсовая: Двойственный симплекс-метод и доказательство теоремы двойственности 2 1 0 D-1 = -1/3 1/3 2/3 -2/3 -1/3 1/3 Курсовая: Двойственный симплекс-метод и доказательство теоремы двойственности Из этой же итерации следует С* = (— 3; —1; 1). Таким образом 2 1 0 Y = С*D-1 = (-3; -1; 1) · -1/3 1/3 2/3 -2/3 -1/3 1/3 Y*=(-19/3; -11/3; -1/3), т. е. yi = С*Хi, где Хi — коэффициенты разложения последней ите­рации, стоящие в столбцах векторов первоначального единичного базиса. Итак, i-ю двойственную переменную можно получить из значения оценки (m + 1)-й строки, стоящей против соответствующего вектора, входившего в первоначальный единичный базиc, если к ней приба­вить соответствующее значение коэффициента линейной функции: у1 = 19/3 + 0 = — 19/3; y2 = -11/3 + 0 = -11/3; у3 = -1/3+0 = -1/3. При этом плане max f = -46/3.

3. Симметричные двойственные задачи

Разновидностью двойственных задач линейного , программирования являются двойственные симметричные задачи, в ко­торых система ограничений как исходной, так и двойственной задач задается неравенствами, причем на двойст­венные переменные налагается условие неотрицательности. Исходная задача. Найти матрицу-столбец Х = (x1, x 2, ., xn), которая удовлетворяет системе ограничений (1.12). АХ>А0, Х>0 и минимизирует линейную функцию Z = СХ. Двойственная задача. Найти матрицу-строку Y = (y1, y 2, ., yn), которая удовлетворяет системе ограничений YA £ C, Y ³ 0 и максимизирует линейную функцию f = YA0. Систему неравенств с помощью дополнительных переменных мож­но преобразовать в систему уравнений, поэтому всякую пару симмет­ричных двойственных задач можно преобразовать в пару несимметрич­ных, для которых теорема двойственности уже доказана. Используя симметричность, можно выбрать задачу, более удоб­ную для решения. Объем задачи, решаемой с помощью ЭВМ, ограни­чен числом включаемых строк, поэтому задача, довольно громоздкая в исходной постановке, может быть упрощена в двойственной формули­ровке. При вычислениях без помощи машин использование двойствен­ности упрощает вычисления. Исходная задача. Найти минимальное значение линейной функции Z = x1 + 2x2 + 3x3 при ограничениях Курсовая: Двойственный симплекс-метод и доказательство теоремы двойственности 2x1 + 2x2 - x3 ³ 2, x1 - x2 - 4x3 £ -3, xi ³ 0 (i=1,2,3) x1 + x2 - 2x3 ³ 6, 2x1 + x2 - 2x3 ³ 3, Очевидно, для того чтобы записать двойственную задачу, сначала необходимо систему ограничений исходной задачи привести к виду (1.12). Для этого второе неравенство следует умножить на -1. Двойственная задача. Найти максимум линейной функции f = 2y1 + 3y2 + 6y3 + 3y4 при ограничениях Курсовая: Двойственный симплекс-метод и доказательство теоремы двойственности 2y1 - y2 + y3 + 2y4 £ 1, 2y1 + y2 + y3 + y4 ³ 2, -y1+ 4y2 - 2y3 - 2y4 ³ 3, Для решения исходной задачи необходимо ввести четыре дополни­тельные переменные и после преобразования системы - одну искус­ственную. Таким образом, исходная симплексная таблица будет состо­ять из шести строк и девяти столбцов, элементы которых подлежат преобразованию. Для решения двойственной задачи необходимо ввести три допол­нительные переменные. Система ограничений не требует предваритель­ных преобразований, ее первая симплексная таблица содержит четыре строки и восемь столбцов. Двойственную задачу решаем симплексным методом (табл. 1.3). Оптимальный план двойственной задачи Y* = (0; 1/2; 3/2; 0), fmax = 21/2. Оптимальный план исходной задачи находим, используя оценки (m + 1)-й строки последней итерации, стоящие в столбцах A5, A6, A7 : x1 = 3/2 + 0 = 3/2; x2 = 9/2 + 0 = 9/2; x3 = 0 + 0 = 0. При оптимальном плане исходной задачи X* = (3/2; 9/2; 0) линейная функ­ция достигает наименьшего значения: Zmin =21/2. Т а б л и ц а 1.3
iБазис

С базиса

A0

2363000

A1

A2

A3

A4

A5

A6

A7

1

2

3

A5

A3

A7

0

0

0

1

2

3

2

2

-1

-1

1

4

1

1

-2

2

-1

-2

1

0

0

0

1

0

0

0

1

m + 1

Zi - Cj

0-2-3-6-3000

1

2

3

A3

A6

A7

6

0

0

1

1

5

2

0

3

-1

2

6

1

0

0

2

-1

2

1

-1

2

0

1

0

0

0

1

m + 1Zi - Cj610-909600

1

2

3

A3

A2

A7

6

3

0

3/2

½

2

2

0

3

0

1

0

1

0

0

3/2

-1/2

4

½

-1/2

5

½

½

3

0

0

1

m + 1

Zi - Cj

21/210009/23/29/20

4. Виды математических моделей двойственных задач

На основании рассмотренных несимметричных и симметричных двойственных задач можно заключить, что математические модели пары двойственных задач могут иметь один из следующих видов. Н е с и м м е т р и ч н ы е з а д а ч и (1) Исходная задача Двойственная задача Zmin = CX; fmax = YA0; AX = A0; YA £ С. X ³ 0. (2) Исходная задача Двойственная задача Zmax = CX; fmin = YA0; AX = A0; YA ³ С. X ³ 0. С и м м е т р и ч н ы е з а д а ч и (3) Исходная задача Двойственная задача Zmin = CX; fmax = YA0; AX ³ A0; YA £ С. X ³ 0. Y ³ 0. (4) Исходная задача Двойственная задача Zmax = CX; fmin = YA0; AX £ A0; YA ³ С. X ³ 0. Y ³ 0. Таким образом, прежде чем записать двойственную задачу для данной исходной, систему ограничений исходной задачи необходимо привести к соответствующему виду. Запишем, например, математиче­скую модель двойственной задачи для следующей исходной. Найти минимальное значение линейной функции Z = 2x1 + x2 + 5x3 при ограничениях Курсовая: Двойственный симплекс-метод и доказательство теоремы двойственности x1 – x2 – x3 £ 4, x1 – 5x2 + x3 ³ 5, xj ³ 0 (j = 1, 2, 3). 2x1 – x2 + 3x3 ³6, Рассматриваемая задача относится к симметричным двойственным задачам на отыскание минимального значения линейной функции. Для того чтобы было можно записать двойственную задачу, ее модель долж­на иметь вид (3). Переход осуществляется умножением первого не­равенства на -1. Исходная задача: Zmin = 2x1 + x2 + 5x3 при ограничениях Курсовая: Двойственный симплекс-метод и доказательство теоремы двойственности -x1 + x2 + x3 ³ -4, x1 – 5x2 + x3 ³ 5, xj ³ 0 (j = 1, 2, 3). 2x1 – x2 + 3x3 ³6, Двойственная задача: fmin = -4x1 + 5x2 + 6x3 при ограничениях Курсовая: Двойственный симплекс-метод и доказательство теоремы двойственности -y1 + y2 + 2y3 £ 2, y1 – 5y2 - y3 £ 1, yi ³ 0 (i = 1, 2, 3). 2y1 + y2 + 3y3 £ 5, Приведем без доказательства следующую теорему. Теорема 1.1. Если при подстановке компонент оптимального пла­на в систему ограничений исходной задачи i-e ограничение обращается в неравенство, то i-я компонента оптимального плана двойственной задачи равна нулю. Если i-я компонента оптимального плана двойственной задачи по­ложительна, то i-e ограничение исходной задачи удовлетворяется ее оптимальным решением как строгое равенство.

5. Двойственный симплексный метод

В п. 2 и п. 3 настоящего параграфа было показано, что для получения решения исходной задачи можно перейти к двой­ственной и используя оценки ее опти­мального плана, определить оптимальное решение исходной задачи. Переход к двойственной задаче не обязателен, так как если рассмо­треть первую симплексную таблицу с единичным дополнительным ба­зисом, то легко заметить, что в столбцах записана исходная задача, а в строках - двойственная. Причем оценками плана исходной задачи являются Сj а оценками плана двойственной задачи – bi. Решим "двойственную задачу по симплексной таблице, в которой записана ис­ходная задача; найдем оптимальный план двойственной задачи, а вместе с ним и оптимальный план исходной задачи. Этот метод носит на­звание двойственного симплексного метода, Пусть необходимо решить исходную задачу линейного программиро­вания, поставленную в общем виде: минимизировать функцию Z =СХ при АХ = A0, Х ³ 0. Тогда в двойственной задаче необходимо максимизировать функцию f = YA0 при YA £ С. Допустим, что выбран такой базис D = (A1 , А2, ..., Аi, ..., Аm), при котором хотя бы одна из компонент вектора Х = D-1 A0 = (x1, x2, ..., xi, ..., xm) отрицатель­ная (например, xi < 0), но для всех векторов Aj выполняется соотно­шение Zj – Cj £ 0 (i = 1,2, ..., n). Тогда на основании теоремы двойственности Y = Сбаз D-1 - план двойственной задачи. Этот план не оптимальный, так как, с одной стороны, при выбранном бази­се X содержит отрицательную компоненту и не является планом исходной задачи, а с другой стороны, оценки оптимального плана двой­ственной задачи должны быть неотрицательными. Таким образом, вектор Аi, соответствующий компоненте xi < 0, следует исключить из базиса исходной задачи, а вектор, соответствую­щий отрицательной оценке,— включить в базис двойственной задачи. Для выбора вектора, включаемого в базис исходной задачи, просмат­риваем i-ю строку: если в ней не содержатся xij < 0, то линейная функция двойственной задачи не ограничена на многограннике реше­ний, а исходная задача не имеет решений. Если же некоторые xij < 0, то для столбцов, содержащих эти отрицательные значения, вычисля­ем q0j= min (xi/xij) ³ 0 и определяем вектор, соответствующий max q0j(Zj — Cj) при решении исходной задачи на минимум и min q0j(Zj — Cj) при решении исходной задачи на максимум. Этот вектор и включаем в базис исходной задачи. Вектор, который необ­ходимо исключить из базиса исходной задачи, определяется направ­ляющей строкой. Если q0j= min (xi/xij) = 0, т. е. xi = 0, то xij берется за раз­решающий элемент только в том случае, если xij > 0. Такой выбор раз­решающего элемента на данном этапе не приводит к увеличению коли­чества отрицательных компонент вектора X. Процесс продолжаем до получения Х ³ 0; при этом находим оптимальный план двойственной задачи, следовательно, и оптимальный план исходной задачи. В процессе вычислений по алгоритму двойственного симплексного метода условие Z j – Cj £ 0 можно не учитывать до исключения всех х i < 0, затем оптимальный план находится обычным симплексным ме­тодом. Это удобно использовать, если все хi < 0; тогда для перехода к плану исходной, задачи за одну итерацию необходимо q0j определить не по минимуму, а по максимуму отношений, т. е. q0j= max (xi/xij) > 0. Двойственным симплексным методом можно решать задачи линей­ного программирования, системы ограничений которых при положи­тельном базисе содержат свободные члены любого знака. Этот метод позволяет уменьшить количество преобразований системы ограниче­ний, а также размеры симплексной таблицы.

6. Список используемой литературы

1. Солодовников А.С., Бабайцев В.А., Браилов А.В. Математика в экономике. «Финансы и статистика», 1998 г. 2. Кузнецов Ю.Н., Кузубов В.И., Волощенко А.Б. Математическое программирование. «Наука», 1980 г.

Страницы: 1, 2



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.