на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Реферат: Кривые и поверхности второго порядка

Реферат: Кривые и поверхности второго порядка

ЭЛЛИПС.

Реферат: Кривые и поверхности второго порядка

Эллипсом называется геометрическое место точек, для которых сумма расстояний от двух фик­сированных точек плоскости, называе­мых фокусами, есть постоянная величина; требуется, чтобы эта по­стоянная была больше расстояния между фокусами. Фокусы эллипса при­нято обозначать через F1 и F2. Пусть М—произвольная точка эллипса с фокусами F1 и F2. Отрезки F1М и F2М (так же как и длины этих отрезков) назы­ваются фокальными радиусами точки М. По­стоянную сумму фокаль­ных ра­диусов точки эллипса принято обозначать через 2а. Таким образом, для любой точки М эллипса имеем: F1М + F2М = 2а. Расстояние F1 и F2 между фокусами обозначают через 2с. Пусть дан какой-нибудь эллипс с фоку­сами F1, F2. Возьмем на плоскости произвольную точку М и обозначим ее координаты через х и у. Обозначим, далее, через r1 и r2 расстояния от точки М до фокусов (r1 = F1М, r2 = F2М). Точка М будет нахо­диться на данном эллипсе в том и только в том случае, когда r1 + r2 = 2а. Чтобы получить искомое уравнение, нужно в равенстве заменить переменные r 1 и r2 их выраже­ниями через координаты х, у. Заметим, что так как F1 F2 = 2с и так как фокусы F1 и F2 распо­ложены на оси Ох симметрично от­носительно начала координат, то они имеют соответственно координаты (—с; 0) и (+с; 0); при­няв это во внимание находим: Реферат: Кривые и поверхности второго порядка Заменяя r1 и r2, получаем: Реферат: Кривые и поверхности второго порядка Это и есть уравнение рассматриваемого эллипса, так как ему удовлетворяют координаты точки М (х; у), когда точка М лежит на этом эллипсе. Возведём обе части равенства в квадрат, полу­чим: Реферат: Кривые и поверхности второго порядка или Реферат: Кривые и поверхности второго порядка Возводя в квадрат обе части последнего равенства, найдем: а2х2 — 2а2сх + а2с2 + а2у2 = а4 — 2а2сх + с2х2 , откуда (а2—с2)х2 + а2у2 = а2(а2—с2). Здесь мы введем в рассмотрение новую величину Реферат: Кривые и поверхности второго порядка ; а>с, следовательно, а2—с2>0 и величина b—вещественна. b2 = a2—c2, тогда b2x2 + a2y2 = a2b2 , или Реферат: Кривые и поверхности второго порядка . Это уравнение называется каноническим уравнением эллипса. Уравнение Реферат: Кривые и поверхности второго порядка , определяющее эллипс в некоторой системе декартовых прямоугольных координат, есть уравнение второй степени; таким образом, эллипс есть линия второго порядка. Эксцентриситетом эллипса называется отношение рас­стояния между фокусами этого эллипса к длине его большой оси; обозначив эксцентриситет буквой ε, получаем: Реферат: Кривые и поверхности второго порядка . Так как с<a, то ε<1, т. е. эксцентриситет каждого эллипса меньше единицы. Заметим, что c2 = a2— b2; поэтому Реферат: Кривые и поверхности второго порядка ; отсюда Реферат: Кривые и поверхности второго порядка и Реферат: Кривые и поверхности второго порядка Следовательно, эксцентриситет определяется отношением осей эллипса, а отношение осей, в свою очередь, определяется эксцен­триситетом. Таким образом, эксцентриситет характеризует форму эллипса. Чем ближе эксцентриситет к единице, тем меньше 1— ε2, тем меньше, следова­тельно, отношение Реферат: Кривые и поверхности второго порядка ; значит, чем больше эксцентриситет, тем более эллипс вытянут. В случае окружности b=a и ε=0. Рассмотрим какой-нибудь эллипс и введем декартову прямо­угольную систему координат так, чтобы этот эллипс определялся каноническим уравнением Реферат: Кривые и поверхности второго порядка Предположим, что рассматриваемый эллипс не является окружностью, т. е. что а≠b и, следова­тельно, ε=0. Предположим еще, что этот эллипс вытянут в направлении оси Ох, т. е. что а>b. Две прямые, перпендикулярные к большой оси эллипса и рас­положенные симметрично относи­тельно центра на расстоянии Реферат: Кривые и поверхности второго порядка от него, называются директрисами эллипса. Уравнения директрис в выбранной системе координат имеют вид Реферат: Кривые и поверхности второго порядка и Реферат: Кривые и поверхности второго порядка . Первую из них мы условимся называть левой, вторую—правой. Так как для эллипса ε<1, то Реферат: Кривые и поверхности второго порядка . Отсюда следует, что правая директриса расположена правее правой вершины эл­липса; аналогично, левая ди­ректриса расположена левее его левой вершины. Частным случаем эллипса является окружность. Её уравнение имеет вид: х2 + у2 = R2. ГИПЕРБОЛА. Реферат: Кривые и поверхности второго порядка Гиперболой называется геометрическое место точек, для которых разность расстояний от двух фиксированных точек плоскости, на­зываемых фокусами, есть постоянная величина; указанная разность берется по абсолютному значению; кроме того, требуется, чтобы она была меньше расстояния между фокусами и отлична от нуля. Фокусы гиперболы принято обозначать через F1 и F2, а расстояние между ними—через 2с. Пусть М—произвольная точка гиперболы с фокусами F1 и F2. Отрезки F1М и F2М (так же, как и дли­ны этих отрезков) называ­ются фокальными радиусами точки М и обозначаются че­рез r1 и r2 (r1 = F1М, r2= F2М). По определению гиперболы разность фокаль­ных радиусов ее точки М есть по­стоянная величина; эту постоян­ную принято обозначать через 2а. Пусть дана какая-нибудь гипербола с фокусами F1 и F2 . Возьмем на плоскости произвольную точку М и обозначим ее координаты через х и у, а фокальные радиусы F1М и F2М через r1 и r2. Точка М будет находиться на (данной) гиперболе в том и только в том случае, когда r1— r2= ±2а. Так как F1 F2=2с и так как фокусы F1 и F2 располо­жены на оси Ох симметрично относительно на­чала координат, то они имеют соответственно координаты (—с; 0) и (+с; 0); приняв это во внима­ние находим: Реферат: Кривые и поверхности второго порядка , Реферат: Кривые и поверхности второго порядка . Заменяя r1 и r2, получаем: Реферат: Кривые и поверхности второго порядка . Это и есть уравнение рассматриваемой гиперболы, так как ему удовлетворяют координаты точки М (х; у), когда точка М лежит на гиперболе. Возведём обе части равенства в квадрат; получим: Реферат: Кривые и поверхности второго порядка Реферат: Кривые и поверхности второго порядка ,Реферат: Кривые и поверхности второго порядка или Реферат: Кривые и поверхности второго порядка . Возводя в квадрат обе части этого равенства, найдем: c2x2 – 2a2cx + a4 = a2x2 – 2a2cx + a2c2 + a2y2 , откуда (c2 – a2)x2 – a2y2 = a2(c2 – a2) . Здесь мы введем в рассмотрение новую величину Реферат: Кривые и поверхности второго порядка ; с>a, следовательно, с2—а2>0 и величина b—вещественна. b2= с2—а2, тогда b2x2 — a2y2 = a2b2 , или Реферат: Кривые и поверхности второго порядка . Уравнение Реферат: Кривые и поверхности второго порядка , определяющее гиперболу в некоторой системе декартовых прямо­угольных коорди­нат, есть урав­нение второй степени; таким образом, гипербола есть линия второго порядка. Эксцентриситетом гиперболы называется отношение рас­стояния между фокусами этой гиперболы к расстоянию между ее вершинами; обозначив эксцентриситет бук­вой ε, получим: Реферат: Кривые и поверхности второго порядка . Так как для гиперболы с>a, то ε>1; т. е. эксцентриситет каждой гиперболы больше единицы. Заме­тив, что c2 = a2+ b2, находим: Реферат: Кривые и поверхности второго порядка ; отсюда Реферат: Кривые и поверхности второго порядка и Реферат: Кривые и поверхности второго порядка . Следовательно, эксцентриситет определяется отношением Реферат: Кривые и поверхности второго порядка , а от­ношение Реферат: Кривые и поверхности второго порядка в свою очередь оп­ределяется эксцентриситетом. Таким образом, эксцентриситет гиперболы ха­рактеризует форму ее основного прямоугольника, а значит, и форму самой гиперболы. Чем меньше эксцентриситет, т. е. чем ближе он к единице, тем меньше ε 2—1, тем меньше, следо­вательно, отношение Реферат: Кривые и поверхности второго порядка ; значит, чем меньше эксцентриситет гиперболы, тем бо­лее вытянут ее ос­новной прямоугольник (в направлении оси, соединяющей вершины). В случае равносторонней ги­перболы a=b и ε=√2. Рассмотрим какую-ни­будь гиперболу и введем декартову прямоугольную систему координат так, чтобы эта гипербола определялась каноническим уравнением Реферат: Кривые и поверхности второго порядка . Две прямые, перпендикулярные к той оси гиперболы, кото­рая ее пересекает, и расположенные симметрично относительно центра на расстоянии Реферат: Кривые и поверхности второго порядка от него, называются директрисами гипер­болы. Уравнения директрис в вы­бранной системе координат имеют вид Реферат: Кривые и поверхности второго порядка и Реферат: Кривые и поверхности второго порядка . Первую из них мы усло­вимся называть левой, вто­рую —правой. Так как для гиперболы ε >1, то Реферат: Кривые и поверхности второго порядка . Отсюда следует, что правая директриса расположена между центром и правой вершиной гипер­болы; ана­логично, левая директриса расположена между центром и левой вершиной. ПАРАБОЛА. Реферат: Кривые и поверхности второго порядка Параболой называется геометрическое место точек, для каждой из которых расстояние до некоторой фиксированной точки плоскости, называемой фо­ку­сом, равно расстоянию до некоторой фиксированной прямой, называемой ди­ректрисой (пред­полагается, что эта прямая не проходит через фокус). Фокус параболы принято обозначать буквой F, расстояние от фокуса до ди­ректрисы—буквой p. Величину р называют параметром параболы. Пусть дана какая-нибудь парабола. Возьмем на плоскости произвольную точку М и обозначим ее координаты через х и у. Обозначим далее через r рас­стояние от точки М до фокуса (r=FM), через d— расстояние от точки М до дирек­трисы. Точка М будет находиться на (данной) параболе в том и только в том случае, когда r=d. Чтобы получить искомое уравнение, нужно заменить переменные r и d их выраже­ниями через те­кущие координаты х, у. Заметим, что фокус F имеет координаты Реферат: Кривые и поверхности второго порядка ; приняв это во внимание, находим: Реферат: Кривые и поверхности второго порядка . Обозначим через Q основание перпендикуляра, опущенного из точки М на директрису. Очевидно, точка Q имеет координаты Реферат: Кривые и поверхности второго порядка отсюда, получаем: Реферат: Кривые и поверхности второго порядка Реферат: Кривые и поверхности второго порядка число положительное; это следует из того, что М (х; у) должна находиться с той стороны от директрисы, где находится фокус, т. е. должно быть Реферат: Кривые и поверхности второго порядка , откуда Реферат: Кривые и поверхности второго порядка . Заменяя r и d, найдем Реферат: Кривые и поверхности второго порядка Это и есть уравнение рассматриваемой параболы, так как ему удовлетворяют коорди­наты точки М (х; у), когда точка М лежит на данной параболе. Возведем обе части равенства в квадрат; получим: Реферат: Кривые и поверхности второго порядка или у2=2рх. Это уравнение называется каноническим уравнением параболы. Уравнение у2=2рх, определяющее параболу в некоторой системе декартовых прямоугольных координат, есть уравнение второй сте­пени; таким образом, парабола есть линия второго порядка. Министерство образования РФ Пензенская Государственная Архитектурно-Строительная Академия РЕФЕРАТ Тема: «Кривые и поверхности второго порядка» Выполнил: Богданович Ольга Специальность: ОБД Обозначение: 240400 Группа: ОБД-11 Проверил: Фадеева Г.Д. Оценка: Пенза – 2000. Кривые второго порядка Поверхности второго порядка Эллипсоид Реферат: Кривые и поверхности второго порядка Однополостный гиперболоид Реферат: Кривые и поверхности второго порядка Двухполостный гиперболоид Реферат: Кривые и поверхности второго порядка Конус Реферат: Кривые и поверхности второго порядка Эллиптический параболоид Реферат: Кривые и поверхности второго порядка Гиперболический параболоид Реферат: Кривые и поверхности второго порядка Эллиптический цилиндр Реферат: Кривые и поверхности второго порядка Гиперболический цилиндр Реферат: Кривые и поверхности второго порядка Параболический цилиндр Реферат: Кривые и поверхности второго порядка

© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.