на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Курсовая работа: Исследование Южного океана

Для измерения температуры водной поверхности из космоса применяют инфракрасные радиометры, работающие на метеорологических и океанологических спутниках, по данным которых регулярно создаются глобальные и региональные карты температур морской поверхности. [5]

Съемка с помощью тепловых инфракрасных радиометров, которыми оснащены все функционирующие метеорологические спутники, открыла возможность единовременной глобальной фиксации температур поверхности океана, что невозможно судовыми или самолетными методами. Глобальные спутниковые фотокарты температур морской поверхности SST (Sea Surface Temperature) составляются по снимкам AVHRR/NOAA с 1981 г. с разным временным и пространственным осреднением, а с 2001 г. они создаются в реальном масштабе времени на основе многоканального алгоритма определения температур и используются в оперативных целях. На рисунке 11 представлена карта, полученная с применением данной аппаратуры. [25]


Рис.11. Температура поверхности Мирового океана в Антарктике 9 октября 2005 г. [25]

Распределение температур воды представляет основной диагностический признак для прогноза участков с наиболее вероятными рыбными скоплениями. До разработки систем глобального картографирования в Центре «Океан» ВНИРО карты температур поверхности океана составлялись регулярно на основные рыбопромысловые районы. Для обеспечения такими картами районов северо-западной Атлантики в Канаде была разработана автоматизированная система Галифакс, выполнявшая по данным спутника NOAA (с учетом поправок на основе судовых наблюдений) с дискретностью 3–4 дня карты в изолиниях температур, передаваемые на рыболовные суда.

Установленный по спутниковым снимкам характер распределения температур воды в океане существенно отличается от прежних представлений о нем. В противоположность отображаемому картами изданных атласов океанов плавному изменению температур на поверхности океана наблюдается весьма сложная и контрастная картина, обусловленная струйными течениями и вихревыми образованиями. В прибрежных районах субтропических и тропических широт фиксируются фронты между теплыми океаническими водами и более холодными прибрежными. [5]

Помимо изучения собственно температур воды, тепловая инфракрасная съемка дает материал для исследования динамических процессов в океане, течений, океанических вихрей и фронтов, апвеллингов и других явлений, при изучении которых привлекают также материалы об уровне океанической поверхности.

Морские течения — это перемещение водных масс, характеризующееся направлением и скоростью.

Основные силы (причины), вызывающие морские течения, подразделяются на внешние и внутренние. К внешним силам относятся ветер, атмосферное давление, приливообразующие силы Луны и Солнца; к внутренним — силы, возникающие вследствие неравномерного распределения по горизонтали плотности водных масс.

Кроме внешних и внутренних сил, вызывающих морские течения, сразу же после возникновения движения вод проявляются вторичные силы, к которым относятся отклоняющая сила вращения Земли (сила Кориолиса) и сила трения, замедляющая всякое движение.

На направление течения оказывают влияние также конфигурация берегов и рельеф дна. Под полем течений понимается распределение суммарного вектора скорости течения на акватории Мирового океана.

«Увидеть» течения на космических снимках оказалось возможным благодаря регистрации температур поверхности инфракрасными радиометрами — по таким снимкам определяют ширину струи, меандры, сопровождающие течение вихри (ринги), грибовидные течения. Для количественных измерений поля течений из космоса, определения направления и скорости движения воды в настоящее время применяются интерферометрические системы на основе радиолокаторов с синтезированной апертурой.

Под полем волнения понимают распределение элементов поверхностных волн (высоты и длины волны). Преобладающими на поверхности океанов и морей являются ветровые и приливо-отливные волны. Вызывая шероховатость морской поверхности, волны отображаются на радиолокационных снимках. Радиоальтиметры позволяют определять высоту волн, а СВЧ-радиометры – силу волнения. [25]

Термин «волна-убийца» и его аналоги в других языках (англ. «rogue wave» — волна-разбойник, «freak-wave» — волна-придурок, отморозок; фр. «onde scelerate» — волна-злодейка, «galejade» — дурная шутка, розыгрыш) дают хорошее представление о существенных чертах этого природного явления, передают чувство ужаса и обреченности при встрече с такой волной в океане.

Волны-убийцы часто определяются как волны, высота которых более чем в два раза превышает значимую высоту волн (среднюю высоту одной трети самых высоких волн). Приведенное определение относится скорее к волнам аномально большой амплитуды (по сравнению со средней). [20]

Волны-убийцы выделяются на радиолокационных снимках по аномально высокой яркости изображения, по которому при особых методах обработки может быть восстановлен профиль волны. Форма данных по волнам представлена на рисунке 12.


Рис. 12. Экстремальная волна (Hmax=29,8 м, Hmax/Hs=2,9) в Южной Атлантике, обнаруженная 20 августа 1996 г. на изображении спутника ERS-2 и восстановленный профиль волны по алгоритму, разработанному в Немецком аэрокосмическом центре. [25]

Настоящие «волны-убийцы», представляющие опасность для судов и морских сооружений, имеют большие абсолютные высоты. Эксперты выделяют «классические аномальные» волны, т.е. волны больших амплитуд, которые могут быть предсказаны в рамках теории однородных квазистационарных случайных процессов и собственно «волны-убийцы», появление которых не описывается существующими теориями случайных процессов. Важное обстоятельство, которое позволяет выделить феномен волн-убийц в отдельную научную и практическую тему и, таким образом, отделить от других явлений, связанных с волнами аномально большой амплитуды (например, цунами) — появление «волн-убийц» из ниоткуда. В отличие от цунами, возникающих в результате подводных землетрясений и оползней, появление «волн-убийц» не связано с катастрофическими геофизическими событиями (рис.13). Эти волны могут появляться при малых ветрах и относительно слабом волнении, что приводит к идее о том, что само явление «волн-убийц» связано с особенностями динамики самих морских волн и их трансформации при распространении в океане. [25]

Рис. 13. Гигантская волна (высотой около 20 м) в проливе Дрейка; фотосъемка с борта НИС «Академик Иоффе». Фото А.В. Григорьева, ИО РАН. [25]

Морские льды образуются в высоких широтах и представляют серьезную проблему для судоходства. Их распространение фиксируется съемочными системами оптического диапазона, а для изучения типа и возраста льдов, их толщины, сплоченности, динамики используются активные (SAR) и пассивные системы радиодиапазона.

Сравнительно недавно единственным способом получения данных о ледовой обстановке были визуальные наблюдения с самолетов, кораблей и экспедиционных судов. Помимо ряда преимуществ, визуальным наблюдениям свойственны недостаточная точность определения характеристик и привязки к месту наблюдений, субъективность количественных оценок, малая обзорность, высокая стоимость, ограниченность во времени и пространстве. Поэтому с недавнего времени традиционные методы визуальных оценок перестали удовлетворять запросы науки и практики, и для авиаразведок стали применяться космические съемки. [24]

С внедрением в космические исследования радиолокационной съемки наиболее перспективными стали космические радиолокационные системы наблюдения за ледовым покровом, позволяющие получать всепогодную, независимую от времени суток и года, точную и оперативную информацию.

Льды, встречающиеся в море, классифицируются по происхождению, видам, формам, подвижности и др. признакам. По происхождению они делятся на морские, речные и материковые.

Различные по своим параметрам льды имеют различные радиофизические характеристики, динамический диапазон рассеянных сигналов от морских льдов может составлять 20–40 дБ. Основными характеристиками морских льдов, которые необходимы для решения практических задач, являются их сплоченность, положение кромки льдов (дрейфующих или припайных), дрейф (направление и скорость), возраст (толщина льдов) и ряд других второстепенных параметров (торосистость, наслоенность, разрушенность и т.п.). Ряд из них, такие как сплоченность, положение кромки и дрейф льдов достаточно легко определить, используя данные съемок в видимом или радио- диапазоне, в то время как определение возрастных характеристик ледяного покрова является наиболее сложной задачей, успешно решаемой на основе регистрации собственного микроволнового излучения льдов, то есть при пассивной микроволновой радиометрической съемке, которую, однако, пока удается выполнить лишь в очень грубым разрешением (6 км)

Другой возможный метод решения этой задачи — космическая радиолокация. Для некоторых видов льдов существует однозначная зависимость яркости изображения/радиолокационных контрастов и их возраста. Современные спутники позволяют получать изображения высокого и среднего разрешения в видимом, тепловом инфракрасном и радиодиапазонах, по которым могут быть оперативно составлены достаточно точные карты ледового покрова для большинства полярных районов. В настоящее время для оперативных наблюдений за ледовым покровом арктических морей применяют спектрорадиометры высокого и среднего разрешения (MODIS на спутниках Terra и Aqua), а также радиолокаторы с синтезированной апертурой SAR на спутниках ERS-2, Envisat и Radarsat и микроволновые радиометры (SSM/I на спутнике DMSP и AMRS-E на спутнике Aqua). К 2005 г. был создан специализированный спутник Cryosat, аппаратура которого, впервые соединяющая возможности альтиметрии и интерферометрии – интерферометрический радиометрии с синтезированной апертурой SIRAL (SAR Interferometric Radar Altimeter) должна была обеспечивать определение толщины льда на краях ледовых полей по разности высоты льда и воды. К сожалению, запуск этого спутника оказался неудачным. [25]

Большая часть спутниковых данных сосредоточена в США в NSIDC - Национальном Центре данных по снегу и льду (The National Snow and Ice Data Center) — эти данные доступны для исследователей по каналам Интернета.

Созданы анимационные фильмы сезонных изменений распространения морских льдов, а по разновременным изображениям — карты «индекса движения льда». Создан атлас дрейфа морских льдов в Антарктике с 1979 г. на основе сочетания данных микроволновой съемки и наблюдений буев. На рисунке 14 показаны кадры из такого фильма, характеризующего ледовую обстановку вблизи Антарктиды.

Рис. 14. Помесячное изменение концентрации морских льдов в Антарктике за 1996 год. [25]

Несмотря на малое разрешение снимков, по этим данным созданы глобальные карты распределения и концентрации морских льдов («индекса морских льдов») — недельные, среднемесячные, среднегодовые, начиная с 1978 г. На рисунке 15 представлен график, который характеризует динамику ледовой обстановки в Южном океане.

Рис. 15. Динамика ледовой обстановки в Южном океане. [15]

По этим данным четко выявляется тренд относительно стабильного состояния площади морских льдов в южном полушарии.


Глава 4. ИЗУЧЕНИЕ ФИЗИКО-ХИМИЧЕСКИХ СВОЙСТВ ЮЖНОГО ОКЕАНА

Соленость поверхности океана представляет собой важнейшую характеристику морской воды. Для динамической океанографии важно знать распределение плотности, определяющей движение водных масс, а плотность морской воды есть функция ее температуры и солености. [8]

Для измерения солености в настоящее время разрабатывается аппаратура на базе микроволновых радиометров.

Имеющиеся данные позволяют рассмотреть основные закономерности полей температуры, солености и плотности вод Мирового океана, содержания растворенного кислорода и концентрации фосфатов. Упомянутые химические элементы представляют исключительно большой интерес не только потому, что они определяют биологическую продуктивность океанических вод, но и как очень хорошие показатели динамических процессов.

Формирование и изменение физико-химических свойств океанических вод находится в теснейшей взаимозависимости с циркуляцией и структурой вод Мирового океана, его тепло и влагообменом с атмосферой. Исходные материалы, необходимые для такого анализа, большей частью относящиеся к отдельным океанам, брались из работ А.М. Муромцева, Г. Бюста, А. Дефанта, Г. Шотта и монографии «Тихий океан», подготовленной коллективом сотрудников Института океанологии АН СССР. Кроме того, использовались осредненные величины, полученные в этом институте в результате механизированной обработки всех океанографических данных, накопленных к настоящему времени. А другие страны ничего не дали???? А ничего, что карты и материалы предоставили США, Великобритания и др. [25]

Обобщение имеющихся сведений позволило построить карты температуры, солености, плотности, содержания кислорода и фосфатов для наиболее характерных глубин по всей толще вод Мирового океана. При этом карты для поверхности, а также глубины 100 и 200 м. дают представление о физико-химических полях поверхностного и подповерхностного слоев поверхностной структурной зоны. Карта для 500 м. характеризует условия, отмечающиеся при переходе от верхнего пограничного слоя к промежуточной структурной зоне. На глубине 1000 м. можно проследить экстремальные свойства промежуточных водных масс. Карта для 2000 м. показательна для верхней части глубинной зоны. Поскольку ниже свойства вод меняются в очень небольших пределах, карты для больших глубин помещаются только в том случае, когда они представляют особый интерес. [29]

Страницы: 1, 2, 3, 4, 5, 6, 7, 8



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.