на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Курсовая работа: Туймазинское месторождение

Понятие “бензольное кольцо” требует расшифровки. Для этого необходимо рассмотреть строение молекулы бензола. Первая структура бензола была предложена в 1865г. немецким ученым А. Кекуле:

Он проводится в присутствии катализаторов из платины

(Платина исп. Platina) — 78 элемент периодической таблицы, атомная масса 195,08; благородный металл серо-стального цвета) или платины и рения

(Рений — химический элемент с атомным номером 75 в Периодической системе химических элементов Д.И. Менделеева, обозначается символом Re (лат. Rhenium). При стандартных условиях представляет собой плотный, серебристо-белый металл).

При каталитическом риформинге бензинов из алканов образуются ароматические соединения.

АЛКАНЫ И ЦИКЛОАЛКАНЫ — углеводороды, в которых все атомы углерода соединены друг с другом и с атомами водорода простыми (одинарными) связями. Алканы (синонимы — предельные углеводороды, насыщенные углеводороды, парафины) — углеводороды с общей формулой CnH2n+2, где n — число атомов углерода. Такую же формулу имеет и всем знакомый полиэтилен, только величина n у него очень велика и может достигать десятков тысяч. Кроме того, полиэтилен содержит молекулы разной длины. В циклоалканах атомы углерода образуют замкнутую цепь; если цикл один, формула циклоалкана CnH2n.)

Циклоалканы превращаются в ароматические соединения, подвергаются гидрированию, изомеризации.

Гидрогенизация (гидрирование) — реакция присоединения водорода по кратной связи, обычно в присутствии катализаторов.

Процесс изомеризация направлен на получение высокооктановых компонентов товарного бензина из низкооктановых фракций нефти путем структурного изменения углеродного скелета. Источником детонации в ДВС является образование свободных радикалов по цепному механизму. Нормальные неразветвленные алканы при горении образуют наиболее активные первичные радикалы, чем вторичные или третичные радикалы при горении разветвленных алканов с изостроением. Поэтому чем разветвление молекула, тем выше её детонационная стойкость, октановое число.

Октан (н-октан) — Органическое соединение клаccа алканов .

Алка́ны (насыщенные углеводороды, парафины, алифатические соединения) — ациклические углеводороды линейного или разветвлённого строения, содержащие только простые связи и образующие гомологический ряд с общей формулой CnH2n+2.

Алканы являются насыщенными углеводородами и содержат максимально возможное число атомов водорода. Каждый атом углерода в молекулах алканов находится в состоянии sp³-гибридизации — все 4 гибридные орбитали атома С равны по форме и энергии, 4 электронных облака направлены в вершины тетраэдра под углами 109°28'. За счёт одинарных связей между атомами С возможно свободное вращение вокруг углеродной связи. Тип углеродной связи — σ-связи, связи малополярны и плохо поляризуемы. Длина углеродной связи — 0,154 нм.

Окта́новое число́ — показатель, характеризующий детонационную стойкость топлива для двигателей внутреннего сгорания

Двигатель внутреннего сгорания (сокращённо ДВС) — это тип двигателя, тепловая машина, в которой химическая энергия топлива (обычно применяется жидкое или газообразное углеводородное топливо), сгорающего в рабочей зоне, преобразуется в механическую работу.

Поршневые двигатели — камерой сгорания является цилиндр, где химическая энергия топлива превращается в механическую энергию, которая из возвратно-поступательного движения поршня превращается во вращательную с помощью кривошипно-шатунного механизма.

Бензиновые — смесь топлива с воздухом готовится в карбюраторе и далее во впускном коллекторе, или во впускном коллекторе при помощи распыляющих форсунок (механических или электрических), далее смесь подаётся в цилиндр, сжимается, а затем поджигается при помощи искры, проскакивающей между электродами свечи.

Основная характерная особенность топливо-воздушной смеси в этом случае - её гомогенизированность. Чем более однородной по составу является смесь, тем более качественно идёт процесс сгорания. Также существует способ смесеобразования путем непосредственного впрыска бензина в цилиндр при помощи распыляющих форсунок. Смесь в этом случае готовится непосредственно в цилиндре и не является гомогенизированной.

Ароматические углеводороды теряют при риформинге боковые заместители, и поэтому они предпочтительней для производства современного высокооктанового бензина. При проведении данного процесса чаще всего используются парафиновые фракции прямой перегонки нефти. Главной задачей каталитического риформинга является превращение низкооктановых бензиновых компонентов в более высокооктановые. Для осуществления процесса риформинга разработаны специализированные установки с неподвижным слоем. В ряде установок используется один реактор. Их минус состоит в том, что реактор приходится останавливать на несколько суток для регенерации катализатора. В тех установках, где используются несколько реакторов одновременно, процесс может протекать непрерывно. Большинство богатых водородом газов, выделяющихся в этих установках, используются при гидрокрекинге.

Продукты риформинга нефтепродуктов используются для получения топливного бензина.

Так же как и в процессе крекинга, риформинг бывает ещё и термическим.

Основными целями риформинга являются:

повышение октанового числа бензинов с целью получения неэтилированного высокооктанового бензина

получение ароматических углеводородов (аренов).

2.5 Отложения парафина

Часто встречающимся осложнением при работе фонтанных скважин является выпадение из нефти парафина, солей, вынос песка, прорывы газа.

По содержанию парафина нефти принято делить на три класса:

1 – беспарафинистая (содержит менее 1% парафина по массе);

2 – слабопарафинистая (содержит 1-2% парафина по массе);

3 – парафинистая (содержит более 2% парафина по массе).

Безводная девонская нефть Туймазинского нефтяного месторождения, например, содержит от 3,7 до 5,5% парафина.

Добыча нефти при наличии в ней парафина осложняется выпадением парафиновых отложнений в трубах, затрубном пространстве, в выкидных линиях, в резервуарах.

Парафиновые отложения состоит из парафина, нефти, смолистых компонентов нефти, а также воды, твердых частиц, глины и песка.

Парафиновые отложения нарушают нормальную работу скважин: их приходится останавливать на ремонт, что приводит к потере добычи нефти. Начало отложения парафина отмечается на глубине 800-900 м. Наибольшие отложения наблюдаются примерно на глубине 100-200 м. Рассмотрим некоторые факторы, влияющие на выпадение парафина из нефти.

В пластовых условиях парафин обычно находится в растворенном состоянии. При снижении давления и температуры нарушается первоначальное физико-химическое равновесие. В результате начинает выделяться из раствора парафин в виде мельчайших кристаллов, которые сначала находятся в нефти во взвешенном состоянии, а впоследствии осаждаются на твердых поверхностях оборудования.

Выпадению парафина способствует снижение температуры в лифте. Температура начала кристаллизации парафина для месторождений Татарии и Башкирии находится в пределах 15…35 градусов С.

Снижение температуры в лифтовых трубах происходит в связи с выделением газа из нефти, которое обусловлено в свою очередь снижением давления по мере перемещения частиц газа в нефти от забоя скважины к устью, а также при снижении устьевого давления. Опишем метод борьбы с парафином, в основу которого положено свойство парафина прилипать только к шероховатым поверхностям. Ученые С.Ф. Люшин и В.А. Рассказов установили, что на гладких поверхностях отложение парафина не наблюдается. Группой ученых объединения «Башнефть» и НГДУ «Туймазанефть», институтов «УралНИТИ» и «ОФ ВНИИКанефтегаз» были разработаны рецептуры материалов и созданы установки для их нанесения на внутреннюю поверхность насосно-компрессорных труб. Были испытаны поверхности, выполненные из стекла, эмали, эпоксидной смелы. Свойство покрытий различны: стекло температуростойко, кислотоупорно, но хрупко. Вследствие больших нагрузок, действующих на насосно-компрессорные трубы в скважине и разных величин деформаций металла и стекла, стекло отделяется от труб, осыпается, образуя стеклянные пробки.

Эмаль более прочна, чем стекло, стойка к агрессивным жидкостям, но также разрушается при механическом воздействии.

Следует сказать, что процесс нанесения стекла и эмали требует нагрева трубы до 700оС и выше, что вызывает изменения в структуре металла и ведет к снижению прочности.

Эпоксидная смола является упругим материалом, наносится при температуре +100оС, процесс нанесения может быть осуществлен в условиях промысловых мастерских. При высоком качестве подготовки поверхности и соответствующем подборе материалов покрытие долговечно и надежно, противостоит парафинообразованию.

2.6 Закачка углекислоты

Углекислый газ СО2, закачиваемый в пласт в жидком виде, смешиваясь в нефтью, уменьшает ее вязкость, увеличивает подвижность, снижает поверхностное натяжение на границе «нефть-порода» Жидкая углекислота экстрагирует из нефти легкие фракции, создавая активно-действующий на породу вал из смеси СО2, и углеводородов и способствующий лучшему отмыванию нефти из пласта. Установлено и химическое взаимодействие СО с породой, ведущее к увеличению ее проницаемости.

По данным БашНИПИнефть нефтеотдача заметно увеличивается после применения СО концентрацией 4…5% (по массе).

Свойства СО2,: бесцветный газ, относительная плотность 1,529 кг/куб.м., критическая температура 31,1 СО2; критическое давление 7,29 Мпа; плотность 468 кг/куб/м; при Т=20оС Р = 5,85 Мпа превращается в бесцветную жидкость с плотностью 770 кг/куб.м. Хорошо растворяется в воде и нефти, снижая ее вязкость на 10…500%.

В настоящее время реализовано несколько технологических схем закачки углекислоты в пласт. Вот несколько из них: закачка карбонизированной воды, закачка углекислого газа, создание оторочки из СО с последующим вытеснением водой, углеводородами или их смесью.

По данным исследований нефтеотдача при применении углекислоты значительно возрастает при увеличении оторочки до 10% порового объема пласта.

Источниками СО2 являются обработанные газы тепловых установок (11…13%) побочная продукция химических производств (до 99%), месторождения нефтяных газов (до 20%).

Закачка СО2 впервые была осуществлена на Александровской площади Туймазинского месторождения в 1967 г. На 1.01.1975 г. в пласт было закачено 252,5 тыс. куб.м. карбонизированной воды с концентрацией СО2 – 1,7%. Израсходовано 4,1 тыс.т. углекислоты. Установлено увеличение охвата пласта заводнением по мощности на 30%, приемистость нагнетательных увеличивается на 10…40%.

Возврат углекислоты в виде добытой жидкости составил 238,8 т (5,7% от закачанной в пласт).

Глава 3. Государственный стандарт Российской Федерации. Нефть

Общие технические условия

Дата введения 2002-07-01

1. Область применения

Настоящий стандарт распространяется на нефти, подготовленные нефтегазодобывающими и газодобывающими предприятиями к транспортированию по магистральным нефтепроводам, наливным транспортом для поставки потребителям Российской Федерации и на экспорт.

В настоящем стандарте применяют следующие термины с соответствующими определениями:

3.1 сырая нефть: Жидкая природная ископаемая смесь углеводородов широкого физико-химического состава, которая содержит растворенный газ, воду, минеральные соли, механические примеси и служит основным сырьем для производства жидких энергоносителей (бензина, керосина, дизельного топлива, мазута), смазочных масел, битумов и кокса.

3.2 товарная нефть (нефть): Нефть, подготовленная к поставке потребителю в соответствии с требованиями действующих нормативных и технических документов, принятых в установленном порядке.

4. Классификация и условное обозначение нефтей

4.1 По физико-химическим свойствам, степени подготовки, содержанию сероводорода и легких меркаптанов нефть подразделяют на классы, типы, группы, виды.

4.2 В зависимости от массовой доли серы нефть подразделяют на классы 1-4 (таблица 1).


Таблица 1

Классы нефти

Класс нефти Наименование Массовая доля серы, % Метод испытания
1 Малосернистая До 0,60 включ.
2 Сернистая От 0,61 1,80 По ГОСТ 1437 и 9.2
3 Высокосернистая 1,81  3,50 настоящего стандарта
4 Особо высокосернистая Св. 3,50
4 Особо высокосернистая Св. 3,50

4.3 По плотности, а при поставке на экспорт - дополнительно по выходу фракций и массовой доле парафина нефть подразделяют на пять типов (таблица 2):

Страницы: 1, 2, 3, 4



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.