на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Учебное пособие: Пуск в работу питательного электронасоса после ремонта

насосный2

Рис. 3. Схема насосного агрегата центробежного типа

1 – открытый источник воды;

2 – всасывающий трубопровод;

3 – открытый нагнетаемый резервуар;

4 – расходомерная вставка в напорном трубопроводе;

5 – насос центробежный;

6 – электродвигатель;

М – манометр на напоре насоса;

V – мановакууметр на всасе насоса;

Р – атмосферное давление.


На рис. 4 показан разрез и устройство обычного центробежного одноступенчатого насоса.

Рис. 4. Схема центробежного насоса

1 – расширяющийся корпус насоса ("улитка");

2 – вал насоса;

3 – рабочее колесо;

4 – лопатки рабочего колеса;

5 – подводящий (всасывающий) патрубок насоса;

6 – отводящий (напорный) патрубок насоса.

Внутри корпуса насоса 1, имеющего, как правило, спиральную форму в виде улитки, на валу 2 насажено рабочее колесо 3. Рабочее колесо состоит из заднего и переднего дисков, между которыми установлены лопасти 4, отогнутые от радиального направления в сторону, противоположную направлению вращения рабочего колеса.

С помощью патрубков 5 и 6 корпус насоса соединен со всасывающим и напорным трубопроводами. Если при наполненных жидкостью корпусе и всасывающем трубопроводе привести во вращение рабочее колесо, то жидкость, находящаяся в каналах рабочего колеса (между его лопастями), под действием центробежной силы будет отбрасываться от центра колеса к периферии. В результате этого в центральной части колеса создается разрежение, а на периферии — избыточное давление. Под действием этого давления жидкость из насоса поступает в напорный трубопровод, одновременно через всасывающий трубопровод под действием разрежения жидкость поступает в насос. Таким образом, осуществляется непрерывная подача жидкости центробежным насосом.

Центробежные насосы могут быть не только одноступенчатыми (с одним рабочим колесом), как показано на рис. 2, но и многоступенчатыми (с несколькими рабочими колесами). При этом принцип их действия во всех случаях остается одним и тем же — жидкость перемещается под действием центробежной силы, развиваемой вращающимся рабочим колесом.

За рубежом получили распространение так называемые диагональные насосы, конструкция которых совмещает в себе признаки центробежных и осевых насосов. В отличие от центробежных в диагональных насосах поток выходит из колеса под углом не в 90°, а в 45°.

У диагональных насосов поток жидкости, проходящий через рабочее колесо, направлен не радиально, как у центробежных насосов, и не параллельно оси, как у осевых, а наклонно, как бы по диагонали прямоугольника, составленного из радиального и осевого направлений.

Наклонное направление потока создает основную конструктивную особенность диагональных насосов — наклонное к оси насоса расположение лопастей рабочего колеса. Это обстоятельство позволяет использовать при создании напора совместное действие подъемной и центробежной сил и по своим рабочим параметрам диагональные насосы занимают промежуточное положение между центробежными и осевыми насосами.

Как ЦБН и осевые, диагональные насосы выпускаются как в горизонтальном, так и с вертикально расположенным валом.


Рис. 5. Разрез диагонального насоса с горизонтальным ротором

насососевой

Рис. 6. Насос осевого типа

1 – корпус насоса; 2 – направляющий неподвижный аппарат насоса; 3 – вращающийся ротор насоса; 4 – вращающиеся вокруг собственной оси рабочие лопасти ротора насоса.


насосструйный

Рис. 7. Струйный насос

1 – конфузор на подаче побудительной среды (вода, газ);

2 - патрубок отсасываемой жидкости (газа);

3 – рабочая камера смешивания подаваемой и отсасываемой среды (вакуумная камера);

4 – диффузорная часть нагнетательно-напорной части насоса.

насосзубч

Рис. 8. Насос зубчатый

1 – корпус насоса;

2 – всасывающая часть насоса;

3 – предохранительно-перепускной клапан;

4 – напорная часть насоса.


насос1

Рис. 9. Насос поршневой (плунжерный)

1 – корпус насоса;

2 – поршень (плунжер);

3 – цилиндр;

4 – шток поршня;

5 – кривошип;

6 – шатун;

7 – привод;

Кв – клапан на всасе в насос;

Кн – клапан нагнетательный со стороны напора насоса

На ТЭС в качестве питательных насосов применяются гидравлические насосы центробежного действия, имеющие весьма высокий коэффициент повышения напора, особенно многоступенчатого исполнения. Механическая энергия подводится в виде вращающегося момента и передается жидкости через лопатки вращающегося рабочего колеса. Действие лопаток на жидкость, заполняющую рабочее колесо, вызывает повышение гидродинамического давления и заставляет жидкость перемещаться в направлении от центра рабочего колеса к периферии, выбрасывая её в спиральный кожух. В дальнейшем движении жидкость поступает в напорный трубопровод. Отсюда следует, что основным рабочим органом центробежного насоса является свободно вращающееся внутри корпуса лопастное колесо. На рис. 10, 11 приведены фотографии рабочего колеса центробежного насоса. В свою очередь, рабочее колесо состоит из двух вертикальных дисков (переднего и заднего по потоку жидкости), как показано на рис. 10, отстоящих на некотором расстоянии друг от друга. Между дисками, соединяя их в единую конструкцию, находятся лопасти, плавно изогнутые в сторону, противоположную направлению вращения колеса (рис.9), т.е. по потоку жидкости. Внутренние поверхности дисков и поверхности лопастей образуют межлопастные каналы колеса, которые при работе насоса заполнены перекачиваемой жидкостью.

Рис.10. Рабочее колесо центробежного насоса в разрезе

Рис. 11. Рабочее колесо центробежного насоса в сборе


Из курса теоретической механики известно, что при вращении колеса с угловой скоростью ω (1/сек) на элементарную массу жидкости m (кг), находящейся в межлопастном канале на расстоянии R (м) от оси вала, будет действовать центробежная сила Fц.б. , определяемая выражением:

F ц.б = m ω2 R (18)

В инженерных расчетах также применяется формула (19) эквивалентная формуле (18):

F ц.б = m V2 / R , (19)

где V (м/с) – линейная скорость движения элементарной массы вещества на радиусе R от центра вращения.

Мы уже говорили, что для обеспечения непрерывного движения жидкости через насос необходимо обеспечить постоянный ее подвод в насос и отвод из насоса. Поэтому жидкость поступает через отверстие в переднем диске рабочего колеса по всасывающему патрубку из всасывающего трубопровода.

Например, движение воды по всасывающему трубопроводу в питательный насос происходит вследствие избыточного давления в корпусе деаэратора и столба питательной воды, равной разности отметок установки аккумуляторного бака деаэратора и отметки установки питательного насоса в машинном зале главного корпуса электростанции.

Обычная отметка установки аккумуляторного бака блочного деаэратора составляет 20÷24 метра в помещении деаэраторной этажерки электростанции в зависимости от мощности энергоблока, а установка питательного насоса выполняется на отметке 0,0 ÷ 5.0 метров в машзале главного корпуса электростанции. Отсюда следует, что разность отметок установки аккумуляторного бака деаэратора и питательного насоса может составлять 15,0 – 19,0 (24 - 5=19) метров и если учесть температуру и удельный объем питательной воды в аккумуляторном баке, а также гидравлическое сопротивление опускного трубопровода питательной воды до всаса питательного насоса, то получится, что подпор на всасе питательного насоса составит 13÷17 м. вод. ст. или 1,3 -1,7 атм. Это дает возможность частично отстроиться от опасного явления кавитации, имея гарантированный запас по давлению питательной воды на всасе питательного насоса. На рис. 12 представлена гидростатическая схема питательного насоса в качестве иллюстрации вышесказанного.

Рис. 12. Гидростатическая схема питательного насоса

А – отметка установки аккумуляторного бака деаэратора;

Б – отметка установки питательного насоса;

H1– высота уровня питательной волы в аккумуляторном баке деаэратора;

H2 – разность отметок установки аккумуляторного бака деаэратора и питательного насоса.

Анализ уравнений (18,19) показывает, что центробежная сила, следовательно, и напор, развиваемый насосом, тем больше, чем больше частота вращения рабочего колеса.

Но увеличение скорости вращения ротора насоса ограничено частотой вращения электродвигателя, т.к. в качестве привода центробежного насоса в основном применяется любой высокооборотный электродвигатель, но чаще всего для этой цели служат электродвигатели асинхронного типа, скорость которых несколько ниже синхронной скорости.

Применение же других электродвигателей, а также электротехнических устройств по регулированию числа оборотов электродвигателя хотя и позволяют изменять скорость вращения ротора насоса, но они не получили широкого распространения на электростанциях в качестве привода питательных насосов из-за своей сложности и не надежности.

В связи с этим в последнее время на российских и зарубежных электростанциях получил широкое применение электропривод питательных насосов с гидромуфтой, которая приведена в Приложении, рис. П-1,2.

В зависимости от требуемых параметров, назначения и условий работы в настоящее время разработано большое число разнообразных конструкций центробежных насосов, которые можно классифицировать по нескольким признакам. Например, по числу рабочих колес различают одноступенчатые и многоступенчатые насосы. В многоступенчатых насосах перекачиваемая жидкость проходит последовательно через целый ряд рабочих колес, насаженных на общий вал.

Создаваемый таким насосом напор равен сумме напоров, развиваемых каждым колесом.

В зависимости от числа колес (ступеней) насосы могут быть двухступенчатыми, трехступенчатыми и т. д. По сути, на одном валу находятся сразу несколько одноступенчатых насосов в виде рабочих колес, которые последовательно повышают напор всего насоса, являющегося его основной напорно-расходной характеристикой.

По способу подвода воды к рабочему колесу различают насосы с односторонним подводом и насосы с двусторонним подводом или, так называемые, центробежные насосы двустороннего входа воды.

По способу отвода жидкости из рабочего колеса различают насосы со спиральным и турбинным отводом.

В насосах со спиральным отводом перекачиваемая жидкость из рабочего колеса поступает непосредственно в спиральную камеру и затем либо отводится в напорный трубопровод, либо по переточным каналам поступает к следующим рабочим колесам.

В насосах с турбинным отводом жидкость, прежде чем попасть в спиральную камеру, проходит через систему неподвижных лопаток, образующих особое устройство, называемое направляющим аппаратом, установленное в статоре насоса.

По компоновке насосного агрегата (расположению вала относительно опор) различают насосы горизонтального и вертикального исполнения.

По способу соединения с двигателем центробежные насосы разделяются на приводные (со шкивом или редуктором), соединяемые непосредственно с двигателями с помощью муфты, и моноблочные, рабочее колесо которых устанавливается на удлиненном конце вала электродвигателя - консольные насосы.

Например, насосы консольного типа обозначаются как К-120-15, т.е. насос консольный, производительностью 120 м3 / час и напором 15 атм.

Напор одноступенчатых центробежных насосов, серийно выпускаемых российской промышленностью, достигает 120 м. вод. ст. (1,2 МПа; 12 атм).

В свою очередь серийные многоступенчатые насосы развивают напор до 2500 м. вод. ст. (25 МПа; 250 атм) и более.

Параметры же центробежных насосов специального изготовления, как одноступенчатых, так и многоступенчатых, могут быть значительно выше.

Что касается КПД, то в зависимости от конструктивного исполнения он меняется в широких пределах — от 0,85 до 0,90 у крупных одноступенчатых насосов и 0,55—0,60 у высоконапорных многоступенчатых.

Столь низкий к.п.д. многоступенчатых высоконапорных насосов связан с гидравлическими потерями в проточной части насоса и особенно с высоким трением разгрузочного стального диска гидравлической пяты в системе осевой разгрузки насоса.

В свою очередь трение этого монолитного чугунного диска толщиной 30-40 мм и диаметром около 300 мм при скорости вращения почти 50 об/сек в замкнутом водяном объеме (в камере гидропяты) приводит к заметному нагреву воды в насосе, температура которой учитывается в тепловом цикле Ренкина.

Также известно, что потребляемая мощность насоса при нулевой подаче, т.е. при закрытой выходной задвижке (это холостой ход насоса), не падает до нуля и составляет около 30-40% от номинальной мощности электродвигателя. Вот эта мощность также превращается в энергию теплоты, которая способна повысить температуру питательной воды до эффекта "запаривания" насоса, при котором механическому воздействию подвергаются рабочие колеса, разгрузочное устройство, опорные подшипники, уплотнения вала насоса и в итоге может привести к аварийному выходу насоса из работы. Повышение температуры питательной воды ∆t в без расходном режиме определяется по формуле:

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.