на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Драйвер-фильтр сокрытия файлов в файловой системе NTFS
p align="left">Проблема в том, что Native API функции не документированы в SDK, но узнать модель их вызова можно дизассемблируя Kernel32.dll. Нельзя утверждать, что адреса функций в системных библиотеках не изменяются в зависимости от версии ОС, ее сборки либо даже конкретной ситуации. Это происходит из-за того, что предпочитаемая база образа библиотеки (dll preferred imagebase) является константой, которую можно изменять при компиляции. Более того, совсем не обязательно, что dll будет загружена именно по предпочитаемому адресу, - этого может не произойти в результате коллизии с другими модулями, динамически выделенной памятью и т.п. Поэтому статический импорт функций происходит по имени модуля и имени функции (либо ее номера - ординала), предоставляемой этим модулем. Загрузчик PE файла анализирует его таблицу импорта и определяет адреса функций, им импортируемых. В случае, если в таблице импорта указана библиотека, не присутствующая в контексте, происходит ее отображение в требуемый контекст, настройка ее образа и ситуация рекурсивно повторяется. В результате в требуемом месте определенной секции PE файла (имеющей атрибут "readable") заполняется массив адресов импортируемых функций. В процессе работы каждый модуль обращается к своему массиву для определения точки входа в какую-либо функцию.

Следовательно, существуют два способа перехвата API вызовов: изменение точки входа в таблице импорта и изменение начальных байт самой функции (сплайсинг функции).

1. Изменение таблиц импорта. Этот метод выглядит так - определяется точка входа перехватываемой функции. Составляется список модулей, в настоящий момент загруженных в контекст требуемого процесса. Затем перебираются дескрипторы импорта этих модулей в поиске адресов перехватываемой функции. В случае совпадения этот адрес изменяется на адрес нашего обработчика.

К достоинствам данного метода можно отнести то, что код перехватываемой функции не изменяется, что обеспечивает корректную работу в многопоточном приложении. Недостаток этого метода в том, что приложения могут сохранить адрес функции до перехвата, и затем вызывать её минуя обработчик. Также можно получить адрес функции, используя GetProcAddress из Kernel32.dll.

Из-за этого существенного недостатка чаще пользуются вторым способом, который был выбран для реализации и в данном курсовом проекте.

2. Сплайсинг функции. Этот метод состоит в следующем - определяется адрес перехватываемой функции, и первые 5 байт её начала заменяются на длинный jmp переход по адресу обработчика перехвата.

Если необходимо вызывать перехватываемую функцию, то перед заменой необходимо сохранить её начальные байты и перед вызовом восстанавливать их.

Недостаток данного метода состоит в том, что если после восстановления начала функции произошло переключение контекста на другой поток приложения, то он сможет вызвать функцию, минуя перехватчик. Этот недостаток можно устранить, останавливая все побочные потоки приложения перед вызовом и запуская после вызова.

Схематически перехват API функции можно изобразить так:

Рис.4. Перехват API функции

Теперь рассмотрим прототип функции ZwQueryDirectoryFile:

NTSTATUS ZwQueryDirectoryFile(IN HANDLE FileHandle,

IN HANDLE Event OPTIONAL,

IN PIO_APC_ROUTINE ApcRoutine OPTIONAL,

IN PVOID ApcContext OPTIONAL,

OUT PIO_STATUS_BLOCK IoStatusBlock,

OUT PVOID FileInformation,

IN ULONG Length,

IN FILE_INFORMATION_CLASS FileInformationClass,

IN BOOLEAN ReturnSingleEntry,

IN PUNICODE_STRING FileName OPTIONAL,

IN BOOLEAN RestartScan);

Для нас важны параметры FileHandle, FileInformation и FileInformationClass.

FileHandle - хэндл объекта директории, который может быть получен с использованием функции ZwOpenFile

FileInformation - указатель на выделенную память, куда функция запишет необходимые данные

FileInformationClass определяет тип записей в FileInformation.

FileInformationClass перечислимого типа, но нам необходимы только четыре его значения, используемые для просмотра содержимого директории.

FileDirectoryInformation:FileFullDirectoryInformation:

FileBothDirectoryInformation:FileNamesInformation:

Функция ZwQueryDirectoryFile записывает набор этих структур в буфер FileInformation. Во всех этих типах структур для нас важны только три переменных:

NextEntryOffset - размер данного элемента списка

Первый элемент расположен по адресу FileInformation + 0, а второй элемент по адресу FileInformation + NextEntryOffset первого элемента. У последнего элемента поле NextEntryOffset содержит нуль.

FileName - это полное имя файла.

FileNameLength - это длина имени файла

Для сокрытия файла, необходимо сравнить имя каждой возвращаемой записи и имя файла, который мы хотим скрыть. Если мы хотим скрыть первую запись, нужно сдвинуть следующие за ней структуры на размер первой записи. Это приведет к тому, что первая запись будет затерта. Если мы хотим скрыть другую запись, мы можем просто изменить значение NextEntryOffset предыдущей записи. Новое значение NextEntryOffset будет нуль, если мы хотим скрыть последнюю запись, иначе значение будет суммой полей NextEntryOffset записи, которую мы хотим скрыть и предыдущей записи. Затем необходимо изменить значение поля Unknown предыдущей записи, которое предоставляет индекс для последующего поиска. Значение поля Unknown предыдущей записи должно равняться значению поля Unknown записи, которую мы хотим скрыть. Если нет ни одной записи, которую можно видеть, мы должны вернуть ошибку STATUS_NO_SUCH_FILE.

1

Рис.5. Блок-схема алгоритма сокрытия файлов

2.3 Описание функций драйвера

Undocnt.h - заголовочный файл недокументированных функций и структур

Windwos NT, использованных в программе

Drvcomm.h - заголовочный файл определения структур

Структура буфера запроса о сокрытии файла

Собственный код IOCTL, с которым можно будет обращаться к драйверу при помощи вызова DeviceIOControl

IOCTL_PROTECT_FILE CTL_CODE(FILE_DEVICE_UNKNOWN, 0x01, METHOD_BUFFERED, FILE_READ_DATA | FILE_WRITE_DATA), где, макрос CTL_CODE собирает информацию о типе запроса и на его основе генерирует код запроса

Driver.c - главный файл драйвера, содержит все основные функции и точки входа, описанные в конструкторском разделе, а так же вспомогательные функции, реализующие сокрытие файлов.

DriverEntry - основная главная точка входа в драйвер, внутри этой функции драйвер выполняет инициализацию для себя и для используемого устройства (в данном случае - «\FileSystem\NTFS». В этой же функции в случае удачи создания устройства создается символическая ссылка на него, устанавливаются обработчики основных функций драйвера (IRP_MJ_CREATE, IRP_MJ_CLOSE, IRP_MJ_DEVICE_CONTROL), но т.к. нет смысла полностью переопределять обработчик открытия файла (IRP_MJ_CREATE), следует взять адрес старого обработчика и в новом, после выполнения некоторых действий, вызывать его.

Для получения старых обработчиков необходимо отключить защиту ядра от записи и функцией InterlockedExchange подменить их.

DeviceControlRoutine - эта точка входа вызывается Диспетчером Ввода/вывода, она необходима, чтобы запросить драйвер инициировать некоторую операцию ввода/вывода. Соответственно, здесь, в случае получения от пользовательского приложения IOCTL_PROTECT_FILE вызываются функции скрытия (PrtAddRule) или открытия (PrtDelRule) файла.

PrtFindRule - функция, просматривающая линейный список уже созданных правил на предмет совпадения имен. Так как представление имен файлов может быть различным, сравнивать имена нужно с конца.

PrtAddRule / PrtDelRule - функции создания и удаления правил о сокрытии файлов. При создании или удалении правила, необходимо проверить его наличие, для этого вызывается функция PrtFindRule. Так как это критическая область, то в этой функции может находиться только один поток, значит необходимо использовать такое средство синхронизации, как семафор.

NewDirectoryControl - обработчик запроса IRP_MJ_DIRECTORY_CONTROL, выполняющего определенную драйвером функцию для существующего файла (в данном случае его сокрытие)

NewCreate - обработчик запроса IRP_MJ_CREATE, соответствующий запросу на обращение к некоторому файлу. При этом проверяется, есть ли правило о сокрытии данного файла в списке правил, и, если оно было найдено, то возвращается STATUS_UNSUCCESSFUL.

Process_Names / Process_Both / Process_Full / Process_Dir - функции, вызываемые в NewDirectoryControl в зависимости от типа FileInformationClass. В них реализуется описанный выше алгоритм удаления файла из информации о директории, при наличии существования соответствующего правила.

1

2.4 Описание функций пользовательского приложения

Часть проекта, работающая в режиме пользователя, представляет собой визуальное приложение, которое предоставляет удобный интерфейс для работы с драйвером, а также реализует все необходимые функции для работы с ним.

OpenDevice - возвращает handle устройства драйвера

RequestDevice - функция получает handle драйвера и посылает ему драйверу с IOCTL кодом с помощью вызова DeviceIoControl

DriverLoad - при загрузке создается ключ реестра с параметрами директории образа драйвера и его типа, потом вызывается функция NtLoadDriver. Если драйвер уже был загружен в память, то возвращается его handle, иначе возвращается STATUS_SUCCESS

DriverUnload - при выгрузке драйвера из памяти вызывается функция NtUnloadDriver

DriverHideObject - функция заполняет структуру request типа REQUEST_BUFFER, описанную выше, и передает управление функции RequestDevice

2.5 Взаимодействие драйвера и приложения

Схематически взаимодействие драйвера и приложения отображено в разделе «структура разрабатываемого программного продукта».

Рассмотрим конкретные средства осуществления этого механизма. В функции DriverEntry выполняется регистрация рабочих процедур. Регистрация производится путем заполнения элементов массива MajorFunction. Индексом в этом массиве является коды IRP_MJ_xxx, то есть описанные числами типы пакетов IRP. Если драйвер считает необходимым обрабатывать IRP запросы какого-либо типа, то в соответствующем элементе массива MajorFuncrion он регистрирует соответствующую функцию (записывает ее адрес). Диспетчер ввода/вывода, ориентируясь на заполнение этого массива, вызывает нужные функции драйвера Dispatch Routines.

В результате вызова в пользовательском приложении функции DeviceIoControl, код IRP пакета поступившего из Диспетчера ввода/вывода будет иметь код IRP_MJ_DEVICE_CONTROL, а одним из внутренних параметров данного IRP пакета будет указанный в вызове функции DeviceIoControl код IOCTL.

Процедура DeviceControlRoutine, описанная в драйвере, предназначена для обработки запросов Диспечера ввода/вывода, которые он формирует в виде IRP пакетов.

В драйвере реализована обработка IOCTL запроса IOCTL_PROTECT_FILE, уже описанного выше.

3. Технологический раздел

3.1 Выбор языка и среды программирования

Сегодня существует большое количество как различных средств разработки, так и платформ. Наиболее используемые в настоящее время языки программирования: C++/MFC, Win32/C++, Visual Basic, Java, Delphi, C#.

Выбор языка программирования сразу же был сделан в пользу C/C++. Будучи языком высокого уровня, он все же предоставляет программисту полный контроль над машиной, позволяет легко переходить на язык более низкого уровня (ассемблер). С++ является мировым стандартом для приложений, где нужно быстродействие и малый размер кода при достаточно глобальных масштабах проекта.

Для написания драйвера использовался язык С, т.к. Windows XP не поддерживает использование C++ для компонентов ядра. Для этого имеется ряд причин:

- отсутствие библиотеки времени исполнения (runtime library), а, следовательно, и определяемых в ней глобальных операторов new и delete;

- отсутствие поддержки исключительных ситуаций C++;

- нет поддержки инициализации глобальных экземпляров классов.

Для разработки драйвера была использована специализированная среда для разработки драйверов - Driver Development Kit (DDK) для Windows XP Service Pack 1 от Microsoft Windows. В частности, утилита BUILD. Эта утилита позволяет создавать любой тип исполняемого файла, поддерживаемый NT с использованием командной строки. Для отладки драйвера использовался режим построения исполняемого файла - Checked build, который позволяет выводить трассировочную информацию с помощью функции DbgPrint(). Для ее просмотра использовалась программа Марка Руссиновича DebugView.

Для разработки пользовательского приложения использовалась среда Microsoft Visual Studio 2005, поскольку она дает мощные и гибкие средства разработки программного продукта.

Для создания максимально переносимого приложения для разработки было использовано WinAPI, что дает возможность пользовательскому приложению работать на всех компьютерах вне зависимости от того, установлен ли на нем FrameWork 2.x. Решающим фактором стало то, что WinAPI дает максимальную скорость выполнения, т.к. в любом случае все функции построены на API средствах Windows и являются лишь их «оберткой», что существенно снижает их эффективность.

При разработке обеих частей проекта была реализована модульность для обеспечения необходимой структурированности, устранения громоздкости кода, и унификации отдельных частей программы с целью обеспечения возможности пользоваться фрагментами программы при написании других приложений и для удобства дальнейшего развития проекта.

3.2 Пользовательский интерфейс

При запуске программы автоматически создается дерево файлов всех дисков NTFS на компьютере. Для загрузки драйвера в память нужно нажать на кнопку «загрузить». При успешной загрузке драйвера будет выдано соответствующее сообщение, в случае ошибки (например, если драйвер уже находится в памяти) пользователю будет выдан тип ошибки.

Рис.7. Вид главного окна

Для сокрытия файлов необходимо выбрать соответствующий файл из каталога файлов и перетащить его в правую сторону, либо нажать на верхнюю кнопку со стрелочкой влево.

Если при закрытии приложения драйвер не был выгружен из памяти, то при последующем запуске все скрытые ранее фалы будут показываться в левом окне приложения. Все скрытые файлы хранятся в реестре в ветке HKEY_LOCAL_MACHINE\SYSTEM\Rootkit и удаляются оттуда либо при поступлении команды о снятии правила с файла. Для того, чтобы снять все правила, необходимо нажать на самую нижнюю кнопку и все файлы, находящиеся слева станут видимыми для пользователя.

При сокрытии файлов необходимо помнить о том, что нельзя скрывать те файлы, которые используются в настоящий момент (!) или к ним возможно последующее обращение (!). Если система не сможет получить доступ к файлу, то для этого файла будут накапливаться необработанные сообщения, что приведет к краху системы.

Рис.8. Вид директории до сокрытия файла DjvuReader.exe

Рис.8. Вид директории после сокрытия файла DjvuReader.exe

3.3 Тестирование драйвера

Для тестирования драйвера использовалась программа Driver Verifier, входящая в состав Driver Development Kit (DDK) для Windows XP Service Pack 1 от Microsoft Windows, которая проверяет правильность следующих тестов:

1. Операции с пулами памяти;

2. Корректность уровней IRQL, на которых выполняется код драйвера;

3. Обнаружение взаимоблокировок;

4. Выполнение DMA операций;

5. Стресс-тест (нехватка ресурсов);

Рис.9. Диспетчер проверки драйверов

Все тесты прошли успешно. Память в системе распределялась правильно, ошибок с ней не возникало. На нехватку ресурсов драйвер реагировал корректно. Нетипичные запросы к драйверу не обрабатывались им.

Выводы

В ходе разработки проекта были исследованы и проанализированы подходы к решению проблемы скрытия файлов.

В результате работы над проектом создано программное средство, позволяющее скрывать файлы и папки в ОС Windows XP с помощью установки драйвера-фильтра файловой системы и обеспечивающее интерактивное взаимодействие с пользователем посредством приложения уровня пользователя. Данный программный продукт может использоваться как обычными пользователями для скрытия информации на компьютере, так и в ходе разработки системного программного обеспечения, поскольку возможно расширение функциональности созданной программы, путем добавления обработчиков соответствующих IRP - запросов в драйвер.

Фильтр-драйвер был протестирован с помощью тестовых утилит из состава пакета DDK и отвечает всем современным требованиям, накладываемым ОС Windows на характеристики драйверов.

Из недостатков реализованного проекта можно отметить невысокую степень защиты скрываемых данных - при перезагрузке системы в безопасном режиме, скрытые файлы и папки становятся снова видимыми. Эту проблему можно решить путем шифрования скрываемых данных, добавив реализацию соответствующих алгоритмов в пользовательское приложение, однако это, как было сказано в начале, выходит за рамки курсового проекта.

Список используемой литературы

1. В.П. Солдатов, Программирование драйверов Windows. Изд. 2-е, перераб. И доп. - М.: ООО «Бином-Пресс», 2004 г. - 480 с.: ил. ISBN 5-9518-0099-4

2. MSDN Library, Copyright 1987-2007 Microsoft Corporation

3. Д.Н. Колесниченко, Rootkits под Windows,теория и практика программирования шапок-невидимок, позволяющих скрывать от системы данные, процессы, сетевые соединения, изд. «Наука и Техника»,2006 г

4. Г. Хоглунг, Дж. Батлер, Руткиты - внедрение в ядро Windows, изд. «Питер», 2007 г.

5. Шрайбер С.Б., Недокументированные возможности Windows 2000, Изд. 1-е, 2002 год, «Питер»

Страницы: 1, 2



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.