на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Фракталы
ля начала нужно сгенерировать Дерево Пифагора (Рисунок 4). Результат напоминает те старые детсадовские рисунки… Так что давайте сделаем ствол толще. На этой стадии Броуновское движение не используется. Вместо этого, каждый отрезок линии теперь стал линией симметрии прямоугольника, который становится стволом, и веток снаружи.

Рисунок 4. Дерево Пифагора

Но результат все еще выглядит слишком формальным и упорядоченным. Дерево еще не смотрится как живое. Попробуем применить некоторые из тех знаний в области детерминированных фракталов, которые мы только что приобрели.

Рисунок 5.

Теперь можно использовать Броуновское движение для создания некоторой случайной беспорядочности, которая изменяет числа, округляя их до двух разрядов. В оригинале были использованы 39 разрядные десятичные числа. Результат (слева) не выглядит как дерево. Вместо этого, он выглядит как хитроумный рыболовный крючок!

Рисунок 6.

Может быть округление до 2 разрядов было слишком уж много? Снова применяем Броуновское движение, округленное на этот раз до 7 разрядов. Результат по-прежнему выглядит как рыболовный крючок, но на этот раз в форме логарифмической спирали!

Рисунок 7.

Так как левая сторона (содержащая все нечетные числа) не производит эффект крючка, случайные беспорядочности, произведенные Броуновским движением применяются дважды ко всем числам с левой стороны и только один раз к числам справа. Может быть этого будет достаточно чтобы исключить или уменьшить эффект логарифмической спирали. Итак, числа округляются до 24 разрядов. На этот раз, результат - приятно выглядящая компьютеризированная хаотическая эмуляция реального дерева.

Рисунок 8.

2.5 Виды фракталов

Решётка Серпинского.

Это один из фракталов, с которыми экспериментировал Мандельброт, когда разрабатывал концепции фрактальных размерностей и итераций. Треугольники, сформированные соединением средних точек большего треугольника вырезаны из главного треугольника, образовывая треугольник, с большим количеством дырочек. В этом случае инициатор - большой треугольник а шаблон - операция вырезания треугольников, подобных большему. Так же можно получить и трехмерную версию треугольника, используя обыкновенный тетраэдр и вырезая маленькие тетраэдры. Размерность такого фрактала ln3/ln2 = 1.584962501.

Чтобы получить ковер Серпинского, возьмем квадрат, разделим его на девять квадратов, а средний вырежем. То же сделаем и с остальными, меньшими квадратами. В конце концов образуется плоская фрактальная сетка, не имеющая площади, но с бесконечными связями. В своей пространственной форме, губка Серпинского преобразуется в систему сквозных форм, в которой каждый сквозной элемент постоянно заменяется себе подобным. Эта структура очень похожа на разрез костной ткани. Когда-нибудь такие повторяющиеся структуры станут элементом строительных конструкций. Их статика и динамика, считает Мандельброт, заслуживает пристального изучения.

Рисунок 9. Решётка Серпинского.

Рисунок 10. Губка Серпинского.

Треугольник Серпинского.

Не перепутайте этот фрактал с решеткой Серпинского. Это два абсолютно разных объекта. В этом фрактале, инициатор и генератор одинаковы. При каждой итерации, добавляется уменьшенная копия инициатора к каждому углу генератора и так далее. Если при создании этого фрактала произвести бесконечное число итераций, он бы занял всю плоскость, не оставив ни одной дырочки. Поэтому его фрактальная размерность ln9/ln3 = 2.0.

Рисунок 11. Треугольник Серпинского.

Кривая Коха.

Кривая Коха один из самых типичных детерминированных фракталов. Она была изобретена в девятнадцатом веке немецким математиком по имени Хельге фон Кох, который, изучая работы Георга Контора и Карла Вейерштрассе, натолкнулся на описания некоторых странных кривых с необычным поведением. Инициатор - прямая линия. Генератор - равносторонний треугольник, стороны которого равны трети длины большего отрезка. Эти треугольники добавляются к середине каждого сегмента снова и снова. В своем исследовании, Мандельброт много экспериментировал с кривыми Коха, и получил фигуры такие как Острова Коха, Кресты Коха, Снежинки Коха и даже трехмерные представления кривой Коха, используя тетраэдр и прибавляя меньшие по размерам тетраэдры к каждой его грани. Кривая Коха имеет размерность ln4/ln3 = 1.261859507.

Рисунок 12. Кривая Коха.

Фрактал Мандельброта.

Это НЕ множество Мандельброта, которое можно достаточно часто видеть. Множество Мандельброта основано на нелинейных уравнениях и является комплексным фракталом. Это тоже вариант кривой Коха несмотря на то, что этот объект не похож на нее. Инициатор и генератор так же отличны от использованных для создания фракталов, основанных на принципе кривой Коха, но идея остается той же. Вместо того, чтобы присоединять равносторонние треугольники к отрезку кривой, квадраты присоединяются к квадрату. Благодаря тому, что этот фрактал занимает точно половину отведенного пространства при каждой итерации, он имеет простую фрактальную размерность 3/2 = 1.5

Рисунок 13. Фрактал Мандельброта.

Кривая Дракона.

Изобретенная итальянским математиком Джузеппе Пеано, Кривая Дракона или Взмах Дракона, как он назвал его, очень похож на колбасу Минковского. Использован более простой инициатор, а генератор тот же самый. Мандельброт назвал этот фрактал Река Двойного Дракона. Его фрактальная размерность приблизительно равна 1.5236.

Рисунок 14. Дракон Джузеппе Пеано.

Множество Мандельброта.

Множества Мандельброта и Жюлиа, вероятно, два наиболее распространенных среди сложных фракталов. Их можно найти во многих научных журналах, обложках книг, открытках, и в компьютерных хранителях экрана. Множество Мандельброта, которое было построено Бенуа Мандельбротом, наверное первая ассоциация, возникающая у людей, когда они слышат слово фрактал. Этот фрактал, напоминающий чесальную машину с прикрепленными к ней пылающими древовидными и круглыми областями, генерируется простой формулой

Zn+1=Zna+C, где Z и C - комплексные числа и а - положительное число.

Множество Мандельброта, которое чаще всего можно увидеть - это множество Мандельброта 2й степени, то есть а=2. Тот факт, что множество Мандельброта не только Zn+1=ZnІ+C, а фрактал, показатель в формуле которого может быть любым положительным числом ввел в заблуждение многих. На этой странице вы видите пример множества Мандельброта для различных значений показателя а.

Также популярен процесс Z=Z*tg (Z+C). Благодаря включению функции тангенса, получается множество Мандельброта, окруженное областью, напоминающей яблоко. При использовании функции косинуса, получаются эффекты воздушных пузырьков. Короче говоря, существует бесконечное количество способов настройки множества Мандельброта для получения различных красивых картинок.

Рисунок 15. Множество Мандельброта.

Рисунок 16. Множество Мандельброта при а=3,5.

Множество Жюлиа.

Удивительно, но множества Жюлиа образуются по той же самой формуле, что и множество Мандельброта. Множество Жюлиа было изобретено французским математиком Гастоном Жюлиа, по имени которого и было названо множество. Первый вопрос, возникающий после визуального знакомства с множествами Мандельброта и Жюлиа это “если оба фрактала сгенерированы по одной формуле, почему они такие разные? ” Сначала посмотрите на картинки множества Жюлиа. Достаточно странно, но существуют разные типы множеств Жюлиа. При рисовании фрактала с использованием различных начальных точек (чтобы начать процесс итераций), генерируются различные изображения. Это применимо только ко множеству Жюлиа.

Хотя это нельзя увидеть на картинке, фрактал Мандельброта - это, на самом деле, множество фракталов Жюлиа, соединенных вместе. Каждая точка (или координата) множества Мандельброта соответствует фракталу Жюлиа. Множества Жюлиа можно сгенерировать используя эти точки в качестве начальных значений в уравнении Z=ZІ+C. Но это не значит, что если выбрать точку на фрактале Мандельброта и увеличить ее, можно получить фрактал Жюлиа. Эти две точки идентичны, но только в математическом смысле. Если взять эту точку и просчитать ее по данной формуле, можно получить фрактал Жюлиа, соответствующий определенной точке фрактала Мандельброта.

Рисунок 17. Множество Жюлиа.

Дерево Фейгенбаума.

Логистическое уравнение - это формула, над которой, в основном, работал Митчелл Фейгенбаум при создании своей теории о фракталах. Эта формула должна описывать динамику развития популяции:

f (x) = (1 - x) rx

Простейшая модель - это пропорциональное соотношение численности с прошлым годом. Допустим в прошлом году у нас было x животных. В этом году их должно быть rx животных. Но это не выполняется в реальных условиях. Лучшее соответствие с реальностью получится если добавить фактор, зависящий от того какой потенциал существует у популяции для дальнейшего развития, и пусть x - коэффициент полноты, который меняется от 0 до 1. Потом добавляется фактор 1 - x, так что территория почти полностью заполнена, популяция не возрастет выше верхнего предела.

Расширяя логистическое выражение, получаем:

f (x) = аx - ах2

Формула, использующаяся в программе LT Bifurcator для объяснения сущности фрактала Фейгенбаума - (1 + r) x - rx2 не сильно отличается от формулы, приведенной выше. В принципе, для изучения теории можно было использовать любую формулу, например самую простую из формул данного вида - xІ - r. Единственными различиями являются различия в координатах окон на картинке и несколько измененный внешний вид изображения.

Рисунок 18. Дерево Фейгенбаума.

2.6 Дерево Фейгенбаума и Множество Мандельброта

Если вы когда-либо видели формулу множетсва Мандельброта z=z2 + x, вы могли бы заметить схожесть между этой формулой и самой простой из формул для построения дерева Фейгенбаума x2 - r. И это действительно так. Сходство существует. Но фейгенбаумово дерево растет в другую сторону. Измените формулу Фейгенбаума на x2 + r и вы увидите сходство. Что касается множества Мандельброта, вам нужно смотреть вдоль горизонтальной оси, так как это единственная позиция в которой комплексная часть числа Мандельброта равна нулю. Вы увидите, что основное тело фигуры Мандельброта находится там, где функция в дереве Фейгенбаума принимает лишь одно значение. Когда происходит первое разделение линии (бифуркация) появляется новое тело на фигуре Мандельброта и т.д. Обратите также внимание на то, что когда в дереве открывается главное окно, на фигуре Мандельброта появляется дочернее тело.

Рисунок 19. Дерево Фейгенбаума и Множество Мандельброта.

3. Постановка задачи

Необходимо спроектировать и разработать программный продукт, при помощи которого возможно наглядно посмотреть изображения фрактальной графики. Программа должна позволять раскрыть сущность фрактала - многократное самоповторение (всего изображения или определённой его части). Интерфейс должен быть максимально понятным. Скорость работы должна быть такой, чтобы сбалансировать производительность и качество, т.е. при данной скорости прорисовывается достаточно наглядное изображение. Необходима так же возможность сохранения фрактального изображения. Программа должна быть интуитивно понятной и "не отталкивать при первом взгляде". Возможностями программы должны быть доступны прорисовки не менее десяти алгебраических и не менее двух геометрических фракталов.

Решение.

Решением данной задачи является программный продукт при помощи которого можно просмотреть по несколько образцов алгебраической и геометрической фрактальной графики. Программа должна иметь встроенное увеличение (многократное), пропорциональное истинному размеру изображения. Интерфейс необходим светлый, приятный, возможно в тонах Windows XP. Нам, например, подойдёт использование градиентной заливки самой формы. Учитывая то, что человек не любит долгие ожидания программа не использует большой размер холста, однако и при данном размере удаётся рассмотреть все достоинства фрактальной графики. Программа использует стандартные возможности сохранения графического изображения в формате *. bmp и не может загружать в себя графические изображения этого формата, т.к эта программа не для просмотра, а для генерации изображений. В программе использованы небесные цвета, она имеет дружественный интерфейс и проста в обращении. Каждая кнопка, параметр и другие органы управления подписаны так, что в справке программа не нуждается, однако она всё же дополнена справкой во избежание конфликтов со стандартами. Возможностями программы доступны прорисовки двадцати одного алгебраического и трёх геометрических фракталов.

Структура.

Программа состоит из двух форм (основной и формы с именами разработчиков и их логотипом). На главной форме могут располагаться два интерфейса:

Алгебраические фракталы

Геометрические фракталы.

Так же имеется окно справки.

Дальнейшая структура интерфейса будет описана в разделе "Руководство пользователя".

Программная структура представляет собой набор функций, каждая из которых является "формулой" прорисовки одного фрактала. И процедуры самой прорисовки.

2

Рисунок 20. Схема работы программы.

Данной схемой (Рисунок 20) представлен внутренний принцип работы программы. Использование одной процедуры прорисовки значительно уменьшает код и объём компонентов интерфейса. Однако представление каждой формулы множества отдельной функцией значительно уменьшает время прорисовки.

Руководство пользователя.

Для установки данного программного продукта необходимо вставить в дисковод диск с лицензионной версией программы. На экране появится мастер установки. Читая его комментарии, вы можете менять места расположения установленных файлов. Если вы согласны с адресами предложенными программой установки, то нажимайте "далее". Затем на рабочем столе вашего компьютера появится иконка с названием программы "Фрактальная графика". Чтобы открыть её, необходимо навести на неё указатель мыши и кликнуть на ней двойным щелчком.

Данная программа позволяет просмотреть изображения двадцати одного алгебраического и трёх геометрических фракталов. При запуске программы она автоматически предоставляет нам интерфейс алгебраических фракталов. Для переключения на геометрические Вам необходимо в строке меню нажать кнопку "Показать"->"Геометрические фракталы".

Прорисовка происходит на прямоугольной области на левой половине окна программы именуемой холстом.

В меню алгебраических фракталов имеются следующие органы управления и ввода параметров:

R - насыщенность красного цвета

G - насыщенность зелёного цвета

B - насыщенность синего цвета

Колличество иттераций - число повторений координат точки при выявлении её принадлежности определённой области (от этого зависит качество изображения)

Список возможных вариантов фракталов:

Прорисовать - кнопка прорисовки

Очистить - кнопка очистки

По умолчанию - исходные значения

Время прорисовки

При работе с геометрическими фракталами:

Серпинский - прорисовка треугольника Серпинского, справа параметр - число иттераций

Дракон Д. Пиано - прорисовка дракона Д. Пиано, справа параметр - число иттераций

Фейгенбаум - прорисовка дерева Фейгенбаума, внизу список параметров

Очистить - очистить.

Так же имеется возможность сохранения изображения в формате *. bmp. Для этого необходимо прорисовать фрактал (по желанию - увеличить), затем войти в меню - "Фаил"->"Сохранить", не указывая расширение, ввести имя фаила и нажать Enter.

При необходимости просмотра фрактальной структуры Вам необходимо навести указатель мыши на область холста, нажать на левую кнопку, а затем растянуть необходимую область движением вправо и отпустить кнопку мыши.

Рисунок 21. Интерфейс программы.

Влияние параметров.

При разработке данной программы учитывались не только требования заказчика, но так же были проведены не которые исследования. Были выявлены следующие закономерности и факты:

При увеличении числа итераций увеличивается качество изображения, но так же увеличивается и скорость прорисовки. Так же при увеличении фрактала с большим числом итераций мы можем видеть более наглядные изображения, и кратность возможного увеличения заметно возрастает.

Подбор цветовых коэффициентов очень сложная и кропотливая работа, требующая большого ресурса человеко-часов.

Время прорисовки так же зависит от выбранных функций. Так степенные функции прорисовываются гораздо быстрее, чем например степенные.

В ходе работы было создано немалое число фракталов, из которых были выбраны лучшие, путём визуального контроля. Формулы, по которым они прорисовываются, были выведены исключительно разработчиками и являются их частной собственностью.

Начальные значения переменных в функциях могут изменить вид фрактала так, что его оригинал визуально будет совсем не похож на клона. Такой принцип, например, применил Жюлиа.

Радиус окружности - эталон, на котором происходит генерация точек, - это важнейший параметр. Например, Фракталы, построенные на основе множества Мандельброта - Spider (i), отличаются только этим радиусом.

Начальные координаты прорисовки определяют полноту изображения на холсте. При их неправильной простановке фрактал может быть виден не полностью.

Многие параметры влияют на красоту фрактала. При его построении все параметры должны быть точно просчитаны и продуманы. Это залог качественного изображения.

Заключение

Фрактальная графика - это не просто множество самоповторяющихся изображений, это модель структуры и принципа любого сущего. Вся наша жизнь представлена фракталами. Не только визуальными, но ещё и структура этого изображения отражает нашу жизнь. Взять, к примеру, ДНК, это всего лишь основа, одна итерация, а при повторении… появляется человек! И таких примеров много. Нельзя не отметить широкое применение фракталов в компьютерных играх, где рельефы местности зачастую являются фрактальными изображениями на основе трёхмерных моделей комплексных множеств и броуновского движения. Фрактальная графика необходима везде, и развитие "фрактальных технологий" - это одна из немаловажных задач на сегодняшний день.

Страницы: 1, 2



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.