на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Генетические алгоритмы
p align="center"> ГЛАВА 2. ЗАДАЧИ ОПТИМИЗАЦИИ.

2.1 Задачи, решаемые с помощью генетических алгоритмов

Теперь мы с вами понимаем, на чем основаны принципы работы генетических алгоритмов. Но для решения каких задач реализуются эти алгоритмы? Итак, в этой главе нами будут рассмотрены задачи оптимизации, их математическая постановка и пути решения. Так же нами будут рассмотрены решение Диофантова уравнения и задачи коммивояжера.

Задачи оптимизации - наиболее распространенный и важный для практики класс задач. Их приходится решать любому из нас или в быту, распределяя свое время между разными делами, или на работе, добиваясь максимальной скорости работы программы или максимальной прибыльности компании - в зависимости от должности.

2.2 Математическая постановка задачи оптимизации

Постановка задачи оптимизации включает в себя множество допустимых решений и числовую функцию , определенную на этом множестве, которая называется целевой функцией.

Нельзя отождествлять критерий (критерии) оптимальности и целевую функцию.

Целевая функция - это аналитическая зависимость между критерием (критериями) оптимальности и подлежащими оптимизации параметрами с указанием направления экстремума.

Отличие понятий «критерий» и «целевая функция» состоит в следующем:

1. Целевая функция может включать в себя более одного критерия.

2. Для целевой функции всегда и обязательно указывается вид экстремума:

Различают два вида задач оптимизации:

o Задачу минимизации.

o Задачу максимизации.

Чтобы решить задачу минимизации функции на множестве, необходимо найти такой вектор ( а также соответствующее значение целевой функции), чтобы неравенство: выполнялось для всех. При этом называют оптимальным решением (точнее здесь - минимальным решением), а - оптимумом (минимумом).

Чтобы решить задачу максимизации функции на множестве, необходимо найти такой вектор (а также соответствующее значение целевой функции), чтобы неравенство: выполнялось для всех. При этом называют оптимальным (максимальным ) решением, а- оптимумом ( максимумом ).

В общем виде находится именно вектор , т.к., например, при решении двухпараметрической задачи, он будет включать в себя два параметра, трехпараметрической - три параметра и т.д.

2.3 Решение Диофантова уравнения

Рассмотрим Диофантово (только целые решения) уравнение: a+2b+3c+4d=30, где a, b, c и d - некоторые положительные целые. Применение ГА за очень короткое время находит искомое решение (a, b, c, d).

Конечно, Вы можете спросить: почему бы не использовать метод грубой силы: просто не подставить все возможные значения a, b, c, d (очевидно, 1 <= a,b,c,d <= 30) ?

Архитектура ГА-систем позволяет найти решение быстрее за счет более 'осмысленного' перебора. Мы не перебираем все подряд, но приближаемся от случайно выбранных решений к лучшим.

Для начала выберем 5 случайных решений: 1 =< a,b,c,d =< 30. Вообще говоря, мы можем использовать меньшее ограничение для b,c,d, но для упрощения пусть будет 30.

Хромосома

(a,b,c,d)

1

(1,28,15,3)

2

(14,9,2,4)

3

(13,5,7,3)

4

(23,8,16,19)

5

(9,13,5,2)

Таблица 1: 1-е поколение хромосом и их содержимое

Чтобы вычислить коэффициенты выживаемости (fitness), подставим каждое решение в выражение a+2b+3c+4d. Расстояние от полученного значения до 30 и будет нужным значением.

Хромосома

Коэффициент выживаемости

1

|114-30|=84

2

|54-30|=24

3

|56-30|=26

4

|163-30|=133

5

|58-30|=28

Таблица 2: Коэффициенты выживаемости первого поколения хромосом (набора решений)

Так как меньшие значения ближе к 30, то они более желательны. В нашем случае большие численные значения коэффициентов выживаемости подходят, увы, меньше. Чтобы создать систему, где хромосомы с более подходящими значениями имеют большие шансы оказаться родителями, мы должны вычислить, с какой вероятностью (в %) может быть выбрана каждая. Одно решение заключается в том, чтобы взять сумму обратных значений коэффициентов, и исходя из этого вычислять проценты. (Заметим, что все решения были сгенерированы Генератором Случайных Чисел - ГСЧ)

Хромосома

Подходимость

1

(1/84)/0.135266 = 8.80%

2

(1/24)/0.135266 = 30.8%

3

(1/26)/0.135266 = 28.4%

4

(1/133)/0.135266 = 5.56%

5

(1/28)/0.135266 = 26.4%

Таблица 3: Вероятность оказаться родителем

Для выбора 5-и пар родителей (каждая из которых будет иметь 1 потомка, всего - 5 новых решений), представим, что у нас есть 10000-стонняя игральная кость, на 880 сторонах отмечена хромосома 1, на 3080 - хромосома 2, на 2640 сторонах - хромосома 3, на 556 - хромосома 4 и на 2640 сторонах отмечена хромосома 5. Чтобы выбрать первую пару, кидаем кость два раза и выбираем выпавшие хромосомы. Таким же образом выбирая остальных, получаем:

Хромосома отца

Хромосома матери

3

1

5

2

3

5

2

5

5

3

Таблица 4: Симуляция выбора родителей

Каждый потомок содержит информацию о генах и отца и от матери. Вообще говоря, это можно обеспечить различными способами, однако в нашем случае можно использовать т.н. "кроссовер" (cross-over). Пусть мать содержит следующий набор решений: a1,b1,c1,d1, а отец - a2,b2,c2,d2, тогда возможно 6 различных кросс-оверов (| = разделительная линия):

Хромосома-отец

Хромосома-мать

Хромосома-потомок

a1 | b1,c1,d1

a2 | b2,c2,d2

a1,b2,c2,d2 or a2,b1,c1,d1

a1,b1 | c1,d1

a2,b2 | c2,d2

a1,b1,c2,d2 or a2,b2,c1,d1

a1,b1,c1 | d1

a2,b2,c2 | d2

a1,b1,c1,d2 or a2,b2,c2,d1

Таблица 5: Кросс-оверы между родителями

Есть достаточно много путей передачи информации потомку, и кросс-овер - только один из них. Расположение разделителя может быть абсолютно произвольным, как и то, отец или мать будут слева от черты.

А теперь попробуем проделать это с нашими потомками

Хромосома-отец

Хромосома-мать

Хромосома-потомок

(13 | 5,7,3)

(1 | 28,15,3)

(13,28,15,3)

(9,13 | 5,2)

(14,9 | 2,4)

(9,13,2,4)

(13,5,7 | 3)

(9,13,5 | 2)

(13,5,7,2)

(14 | 9,2,4)

(9 | 13,5,2)

(14,13,5,2)

(13,5 | 7, 3)

(9,13 | 5, 2)

(13,5,5,2)

Таблица 6: Симуляция кросс-оверов хромосом родителей

Теперь мы можем вычислить коэффициенты выживаемости (fitness) потомков.

Хромосома-потомок

Коэффициент выживаемости

(13,28,15,3)

|126-30|=96

(9,13,2,4)

|57-30|=27

(13,5,7,2)

|57-30|=22

(14,13,5,2)

|63-30|=33

(13,5,5,2)

|46-30|=16

Таблица 7: Коэффициенты выживаемости потомков (fitness)

Средняя приспособленность (fitness) потомков оказалась 38.8, в то время как у родителей этот коэффициент равнялся 59.4. Следующее поколение может мутировать. Например, мы можем заменить одно из значений какой-нибудь хромосомы на случайное целое от 1 до 30. Продолжая, таким образом, одна хромосома, в конце концов, достигнет коэффициента выживаемости 0, то есть станет решением. Системы с большей популяцией (например, 50 вместо 5-и) сходятся к желаемому уровню (0) более быстро и стабильно.

2.4. Пути решения задач оптимизации

Генетический алгоритм - новейший, но не единственно возможный способ решения задач оптимизации. С давних пор известны два основных пути решения таких задач - переборный и локально-градиентный. У этих методов свои достоинства и недостатки, и в каждом конкретном случае следует подумать, какой из них выбрать.

Рассмотрим достоинства и недостатки стандартных и генетических методов на примере классической задачи коммивояжера (TSP - travelling salesman problem). [20] Суть задачи состоит в том, чтобы найти кратчайший замкнутый путь обхода нескольких городов, заданных своими координатами. Оказывается, что уже для 30 городов поиск оптимального пути представляет собой сложную задачу, побудившую развитие различных новых методов (в том числе нейросетей и генетических алгоритмов).

рис. 1 Кратчайший путь

Каждый вариант решения (для 30 городов) - это числовая строка, где на j-ом месте стоит номер j-ого по порядку обхода города. Таким образом, в этой задаче 30 параметров, причем не все комбинации значений допустимы. Естественно, первой идеей является полный перебор всех вариантов обхода.

рис.2 Переборный метод

Переборный метод наиболее прост по своей сути и тривиален в программировании. Для поиска оптимального решения (точки максимума целевой функции) требуется последовательно вычислить значения целевой функции во всех возможных точках, запоминая максимальное из них.

Недостатком этого метода является большая вычислительная стоимость. В частности, в задаче коммивояжера потребуется просчитать длины более 1030 вариантов путей, что совершенно нереально. Однако, если перебор всех вариантов за разумное время возможен, то можно быть абсолютно уверенным в том, что найденное решение действительно оптимально.

Второй популярный способ основан на методе градиентного спуска (рис. 7). При этом вначале выбираются некоторые случайные значения параметров, а затем эти значения постепенно изменяют, добиваясь наибольшей скорости роста целевой функции. Достигнув локального максимума, такой алгоритм останавливается, поэтому для поиска глобального оптимума потребуются дополнительные усилия.

рис. 3 Метод градиентного спуска

Градиентные методы работают очень быстро, но не гарантируют оптимальности найденного решения. Они идеальны для применения в так называемых унимодальных задачах, где целевая функция имеет единственный локальный максимум (он же - глобальный). Легко видеть, что задача коммивояжера унимодальной не является.

Страницы: 1, 2, 3, 4



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.