на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Кластеризация групп входящих пакетов с помощью нейронных сетей конкурирующего типа
p align="left">При этом легко заметить, что для шестиугольной сетки расстояние между нейронами больше совпадает с евклидовым расстоянием, чем для четырехугольной сетки. Количество нейронов в сетке определяет степень детализации результата работы алгоритма, и, в конечном счете, от этого зависит точность обобщающей способности карты.

Рис.4 - Расстояние между нейронами на шестиугольной (а) и четырехугольной (б) сетках

Перед началом обучения карты необходимо проинициализировать весовые коэффициенты нейронов. Удачно выбранный способ инициализации может существенно ускорить обучение, и привести к получению более качественных результатов. Существуют два основных способа инициирования начальных весов:

· Инициализация случайными значениями - всем весам даются малые случайные величины.

· Инициализация примерами - всем весам в качестве начальных значений задаются значения случайно выбранных примеров из обучающей выборки.

Обучение состоит из последовательности коррекций векторов, представляющих собой нейроны. На каждом шаге обучения из исходного набора данным случайно выбирается один из векторов (обозначим его х), а затем производится поиск наиболее схожего с ним вектора коэффициентов нейронов. При этом выбирается нейрон-победитель, который наиболее схожий с вектором входов. Под «схожестью» в данной задаче понимается некоторая метрика, заданная в пространстве входных векторов. В качестве метрики обычно используется расстояние в евклидовом пространстве. Узел нейрона-победителя для входного вектора после обучения нейросети называется «наиболее подходящим узлом» (Best Matching Unit - BMU).

Таким образом, если обозначить нейрон-победитель номером c, то:

,

После того, как найден нейрон-победитель, производится корректировка весов нейросети. При этом вектор, описывающий нейрон-победитель и вектора, описывающие его соседей в сетке, перемещаются в направлении входного вектора. Это проиллюстрировано на рисунке для двумерного вектора.

Рис.5 - Подстройка весов нейрона победителя и его соседей

При этом для модификации весовых коэффициентов используется формула:

,

где t обозначает номер эпохи (номер итерации обучения).

Функция h(t) называется функцией соседства нейронов. Эта функция представляет собой невозрастающую функцию от времени и расстояния между нейроном-победителем и соседними нейронами в сетке. Эта функция разбивается на две части: собственно функцию расстояния и функции скорости обучения от времени:

,

где r - координаты нейрона в сетке.

Обычно применяется одна из двух функций от расстояния: простая константа:

,

или Гауссова функция:

,

При этом является убывающей функцией от времени. Эту величину называют радиусом обучения. Он выбирается достаточно большим на начальном этапе обучения и постепенно уменьшается так, что в конечном итоге обучается один нейрон-победитель. Наиболее часто используется функция, линейно убывающая от времени.

Функция скорости обучения также представляет собой функцию, убывающую от времени. Наиболее часто используются два варианта этой функции: линейная и обратно пропорциональная времени вида:

,

где A и B это константы. Применение этой функции приводит к тому, что все вектора из обучающей выборки вносят примерно равный вклад в результат обучения.

Обучение состоит из двух основных фаз: на первоначальном этапе выбирается достаточно большое значение скорости обучения и радиуса обучение, что позволяет расположить вектора нейронов в соответствии с распределением примеров в выборке, а затем производится точная подстройка весов, когда значения параметров скорости обучения много меньше начальных.

2.3.6 Алгоритм нейронного газа

В этом алгоритме на каждой итерации все нейроны сортируются в зависимости от их расстояния до вектора x. После сортировки нейроны размечаются в последовательности, соответствующей увеличению удалённости.

где dk=|x-wm(i)| обозначает удалённость i-того нейрона, занимающего в результате сортировки m-ю позицию в последовательности, возглавляемой нейроном-победителем, которому сопоставлена удаленность d0. Значение функции соседства для i-того нейрона G(i,x) определяется по формуле:

в которой m(i) обозначает очерёдность, полученную в результате сортировки (m(i)=1,2,3,…,n-1), а лямбда - параметр, аналогичный уровню соседства в алгоритме Кохонена, уменьшающийся с течением времени. При лямбда =0 адаптации подвергается только нейрон-победитель, и алгоритм превращается в обычный алгоритм WTA, но при уточнению подлежат веса многих нейронов, причём уровень уточнения зависит от величины G(i,x).

Для достижения хороших результатов самоорганизации процесс обучения должен начинаться с большого значения лямбда, однако с течением времени его величина уменьшается до нуля.

3. Формализация задачи

В качестве группы пакетов, выступающих в качестве обучающего примера, возьмём 10 подряд идущих поступающих на рабочую станцию пакетов. Для построения модели оценим в каждой группе следующие параметры:

1.Число пакетов поступивших от хостов “своей” ЛВС.

2.Число фрагментированных пакетов.

3.Число TCP-пакетов.

4.Число UDP-пакетов.

5.Максимальное число пакетов в группе, пришедших от одного из хостов-отправителей.

6.Принадлежность хоста, отправителя наибольшего числа пакетов. (1 - “своя” ЛВС, 0 - иначе)

7.Средняя загрузка процессора (без учёта приложений не связанных с сетью). (%)

8.Изменение загрузки процессора с времени получения первого пакета до времени получения последнего пакета (без учёта приложений не связанных с сетью).(%)

9.Средний размер пакета. (байт)

10.Число пакетов размером в интервале с 0.8*x до 1.2*x, где x - средний размер пакета.

11. Число доступных хостов.

12. Число различных хостов.

Вышеперечисленные параметры будут являться входами модели. Пользователю следует определить размер карты Кохонена, а также параметры настройки нейронной сети. Остаётся только сгенерировать различные пакеты TCP, UDP и ICMP как обычные, так и “хакерские”, и переслать их на хост, ведущий журнал входящих пакетов и их параметров. Из данного журнала пакеты объединяются в группы (10 последовательно идущих пакетов). Для каждой группы определяются выделенные интегральные критерии.

Полученные данные служат для самообучения сети.

4. Эксперимент

На локальную станцию (192.168.0.3) поступают следующие пакеты:

TCP - обычные пакеты от станций собственной ЛВС. Соединение происходит в обычном режиме. Передача файлов.

ICMP - обычные пакеты, “проверка связи”.

UDP - обычные пакеты от станций ЛВС, обмен данными между приложениями BroodWar, Blizzard Intertainment.

TCP - обычные пакеты от хостов, на принадлежащих “своей” ЛВС, передача файлов.

TCP - “хакерские” пакеты. Паническая атака.

ICMP - пакеты, являющиеся следствием широковещательного шторма.

UDP - “хакерские” пакеты (посылка широковещательного шторма).

TCP - “хакерские” пакеты, фрагментрованные и не связанные между собой (aтака на файрфолл).

Эксперимент представляет собой посылку и запоминание чередующихся обычных и “опасных” пакетов. Причём в группе, относящийся к классу зарождающейся атаки, могут присутствовать и совершенно безвредные пакеты с данными и сообщениями. Того как заранее определённое число пакетов было получено и после предобработки в группы произошло обучение модели, необходимо произвести визуализацию карты Кохонена. На карте, состоящей из квадратов, где за каждый квадрат отвечает один нейрон, производится заливка в зависимости от класса опасности. Нейроны, отвечающие за класс - тотальная атака (большое число опасных пакетов), окрашиваются в более тёмно красные цвета, нейроны, классифицирующие обычную работу станции в сети (приём-передача данных), окрашены в более нейтральные цвета.

5. Результаты работы модели

1.Стандартный алгоритм Кохонена. Карта 10*10 нейронов.

Рис.5 Визуализация карты Кохонена при обучении стандартным алгоритмом Кохонена

Из-за того что многие нейроны после обучения остались мертвыми нейронная сеть имеет высокую погрешность квантования.

Самые опасные классы характеризуются следующими параметрами: небольшие по размеру пакеты, значительное количество пакетов одного типа, например только ICMP или UDP, и одного размера, во время получения этих групп пакетов происходит существенная загрузка процессора, значительная часть хостов - отправителей не доступны. Другим опасным классом является кластер с большими по размерам фрагментированными пакетами.

2.Стандартный алгоритм Кохонена с учётом соседства. Карта 10*10 нейронов.

Рис.6 Визуализация карты Кохонена при обучении стандартным алгоритмом Кохонена с учётом соседства

Из-за подстройки большего числа нейронов значительная часть нейронов - “живая”. Погрешность квантования значительно ниже. Визуально прослеживается группирование опасных групп пакетов. Между двумя основными очагами опасности (в левом и правом углах карты) расположены группы пакетов соответствующие безопасной передаче.

3.Обучение карты признаков с механизмом утомления. Карта 10*10 нейронов.

Рис.7 Визуализация карты Кохонена при обучении с использованием механизма утомления.

4. Обучение карты признаков с механизмом утомления и подстройкой соседей. Карта 10*10 нейронов.

Рис.8 Визуализация карты Кохонена при обучении обучении с использованием механизма утомления и подстройкой соседей.

5 .Алгоритм нейронного газа.=

Рис.9 Визуализация карты Кохонена при обучении. Алгоритмом нейронного газа

Большой разброс по карте различных цветов объясняется самим алгоритмом обучения: здесь соседство нейронов не зависит от расположения нейронов на карте признаков.

Кроме визуализации карты важны также значения синаптических весов. Синаптический вес W0=1- поляризация нейрона.

Пример.1

Рис.10 Карта Кохонена. 5*5 нейронов.

Ниже даны значения синаптических весов для каждого из “живых” нейронов.

Нейрон 0

1

7,87128697398845

0,625510201518193

2,7803597528978

1,89207931247814

3,29053079148225

0,846173185063035

13,5345966850206

7,0865225491331

129,307664502201

1,40585258052631

9,01013368873421

Нейрон 1

1

7,15478814257012

0,80038505604928

3,4657135681091

2,14143521744823

3,44359875511805

0,776338372597683

12,9441507600633

5,13478248587067

183,45652320823

0,892269137377325

8,8894329158617

Нейрон 2

1

6,51072352952404

0,992340068508278

4,06763582460853

2,78810515781772

3,8079162430252

0,67583544535221

11,7697105357889

1,88885822746819

277,625057718703

0,489223807498444

9,01986066715186

Нейрон 3

1

5,89443270744136

1,07835225630037

5,00871505425791

3,21406653769472

4,05965826713145

0,688612599435516

9,64055979833943

0,176019982013541

349,212505651654

0,307102637433364

8,2882446272146

Нейрон 4

1

5,70325599064924

1,50203934884403

5,48238703058519

2,857530344957

4,1045922884135

0,559367823973787

9,80870961032371

-2,51748577298294

388,707709851468

0,360064195846817

8,67487120799402

Нейрон 6

1

6,98662538009356

0,943325646563848

3,76316661580884

2,28074699102588

3,84435226155865

0,675295943164295

13,1166889150889

2,5894675318043

232,422065671803

0,578616436145349

9,30231795759802

Нейрон 7

1

6,4383154761932

1,30743427921713

4,43322764797434

2,5712769815738

4,015643912254

0,585958396325411

11,4384134686756

0,295227565032279

308,441204991856

0,436934279428607

9,22429249868916

Нейрон 8

1

6,2914496789632

1,49510940329358

5,16485493868028

2,94683540727014

4,26732605590749

0,59451625983309

10,9123469737949

-2,32327270509521

397,564552174538

0,581383154548032

9,07977817163535

Нейрон 9

1

5,78995420800614

1,73921623428801

5,64413639879408

2,83323796423943

4,40990583312066

0,500543095760549

11,1144609757214

-5,73252740367375

449,019038281951

0,657035152619139

9,23115369270226

Нейрон 10

1

6,97268621817446

0,79277691809128

4,02543058948051

2,46523221397023

3,77806690364019

0,676526389633808

13,8202281014187

0,469769683982962

259,238919476768

0,757542791254212

9,28309047834848

Нейрон 11

1

7,04631978115591

0,866271976699346

4,10365456015304

2,88223720882954

4,03150518348344

0,741278370899166

13,8559400919982

-1,255919505345

293,322921366235

0,704152207962319

9,48440166138134

Нейрон 12

1

6,53912681147659

1,56421780805537

4,65601147347958

2,9067904818665

4,27363452636153

0,618578255936595

12,5822623306945

-2,08418808911294

374,872439162492

0,774431791221968

9,54008041266804

Нейрон 13

1

5,69340841412797

2,44796836439865

5,48622818955848

2,92237813180815

4,67788797387526

0,423401926734283

12,1938129780133

-3,92356491480928

497,650849296462

1,22621001209077

9,58796185267328

Нейрон 14

1

5,10226147046721

2,74988223156105

5,9342783502907

2,83173118981968

4,95695609620259

0,316516196981386

12,0153591762438

-5,69212277788297

553,351005991353

1,42911651866737

9,61230903245157

Нейрон 15

1

6,98052845303821

1,22279827555202

4,46220766547028

2,90189348319595

4,15096271989555

0,718494733032167

13,8462699925973

-0,265034800167613

329,133144315137

0,789272703113608

9,41327311392812

Нейрон 16

1

6,78108488859872

1,4587788312988

4,75098402281347

2,99715775219415

4,35524349138507

0,688106328846737

13,146546408368

-1,83766433492922

378,789970538933

0,911094890831572

9,47688044148138

Нейрон 17

1

5,9813392597355

2,59141112244731

5,42222552146448

2,88984764450358

4,90655379368435

0,558857955310756

12,3129769708837

-1,59557885143347

509,639060778038

1,46442141785324

9,64035319482989

Нейрон 18

1

4,37316852020513

3,93024605710541

6,35532277636607

2,54556862325942

5,71566995847879

0,301720400062721

12,1338787032946

-0,810932403256381

666,82904006035

2,40887775038786

9,71260136248531

Нейрон 19

1

3,82835833175608

4,14740478540821

6,51201817449346

2,53488453447905

5,87186670401515

0,209331814630084

12,1270372594924

-1,30049493872786

704,444674316111

2,25030241452771

9,65725372019714

Нейрон 21

1

6,39813422562582

2,08493929159042

5,32829499657161

3,06032597511598

4,7641814353147

0,582189552264411

12,5599245219555

-1,96191395295381

469,290874929838

1,22613369905861

9,46669357056521

Нейрон 23

1

3,55908012277478

4,77646016724021

6,74861021282903

2,41585236193159

6,31871793270481

0,255152204011248

12,1980038558062

1,93696746210735

759,876377313462

2,82715213468638

9,64367900062772

Нейрон 24

1

3,37428950504548

4,73559755878779

6,67504947616927

2,51158813130044

6,22501279809869

0,20990156336746

12,1086739774428

1,00744771459805

778,544161691368

2,27296953057915

9,5765164059112

Страницы: 1, 2, 3, 4, 5



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.