на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Квантовые вычисления
p align="left">Наконец, очень важно, что в ходе исследований задач квантового компьютинга подвергаются новому анализу и экспериментальной проверке основные проблемы квантовой физики: проблемы локальности, реальности, дополнительности, скрытых параметров, коллапса волновой функции.

Идеи квантового компьютинга и квантовой связи возникли спустя сто лет после рождения первоначальных идей квантовой физики. Возможность построения квантовых компьютеров и систем связи показана выполненными к настоящему времени теоретическими и экспериментальными исследованиями. Квантовая физика "достаточна" для проектирования квантовых компьютеров на различной "элементной базе". Квантовые компьютеры, если их удастся построить, будут техникой XXI века. Для их изготовления потребуется создание и развитие новых технологий на нанометровом и атомном уровне размеров. Эта работа может занять, по-видимому, несколько десятилетий. Построение квантовых компьютеров было бы еще одним подтверждением принципа неисчерпаемости природы: природа имеет средства для осуществления любой корректно сформулированной человеком задачи.

В обычном компьютере информация кодируется последовательностью битов, и эти биты последовательно обрабатываются булевскими логическими элементами, чтобы получить нужный результат. Аналогично квантовый компьютер обрабатывает кубиты, выполняя последовательность операций квантовыми логическими элементами, каждый из которых представляет собой унитарное преобразование, действующее на единичный кубит или пару кубитов. Последовательно выполняя эти преобразования, квантовый компьютер может выполнить сложное унитарное преобразование над всем набором кубитов приготовленных в некотором начальном состоянии. После этого можно произвести измерение над кубитами, которое и даст конечный результат вычислений. Это сходство вычислений между квантовым и классическим компьютером позволяет считать, что, по крайней мере, в теории, классический компьютер может в точности воспроизводить работу квантового компьютера. Другими словами, классический компьютер может делать все то же самое, что и квантовый компьютер. Тогда зачем вся эта возня с квантовым компьютером? Дело в том, что, хотя теоретически классический компьютер может симулировать квантовый компьютер, это очень неэффективно, настолько неэффективно, что практически классический компьютер не в состоянии решать многие задачи, которые по плечу квантовому компьютеру. Симуляция квантового компьютера на классическом компьютере вычислительно сложная проблема, потому что корреляции между квантовыми битами качественно отличается от корреляций между классическими битами, как было впервые показано Джоном Беллом. Для примера можно взять систему только из нескольких сотен кубитов. Она существует в пространстве Гильберта размерностью ~1090, что потребует, при моделировании классическим компьютером, использования экспоненциально больших матриц (чтобы выполнить расчеты для каждого отдельного состояния, которое также описывается матрицей). Это означает, что классическому компьютеру понадобится экпоненциально больше времени по сравнению даже с примитивным квантовым компьютером.

Ричард Фейнман был среди первых, кто осознал потенциал, заложенный в явлении квантовой суперпозиции для решения таких задач гораздо быстрее. Например, система из 500 кубитов, которую практически невозможно промеделировать классически, представляет собой квантовую суперпозицию из 2500 состояний. Каждое значение такой суперпозиции классически эквивалентно списку из 500 единиц и нулей. Любая квантовая операция над такой системой, например, настроенный определенным образом импульс радиоволн, который может выполнить операцию управляемое НЕ над, скажем, 100-м и 101-м кубитом, будет одновременно воздействовать на 2500 состояний. Таким образом, за один тик компьютерных часов квантовая операция вычисляет не одно машинное состояние, как обычные компьютеры, а 2500 состояний сразу! Однако, в конце концов, над системой кубитов производится измерение, и система коллапсирует в единственное квантовое состояние, соответствующее единственному решению задачи, единственному набору из 500 единиц и нулей, как это диктуется измерительной аксиомой квантовой механики. Это поистине волнующий результат, поскольку это решение, найденное колективным процессом квантовых параллельных вычислений, берущим свои истоки в суперпозиции, эквивалентно выполнению той же самой операции на классическом суперкомпьютере с ~10150 отдельных процессоров (что, конечно, невозможно)!! Первые исследователи в этой области были, конечно, вдохновлены такими гигантскими возможностями, и поэтому вскоре началась настоящая охота за подходящими задачами для такой вычислительной мощи. Питер Шор, исследователь и компьютерный ученый из компании AT&T's Bell Laboratories в Нью Джерси, предложил такую задачу, которую можно было бы решить именно на квантовом компьютере и при помощи квантового алгоритма. Алгоритм Шора использует мощь квантовой суперпозиции, чтобы раскладывать большие числа (порядка ~10200 двоичных разрядов и больше) на множители за несколько секунд. Эта задча имеет важное практическое применение для шифрования, где общепринятый (и лучший) алгоритм шифрования, известный как RSA, основан как раз на сложности разложения больших составных чисел на простые множители. Компьютер, который с легкостью решает такую задачу, конечно, представляет большой интерес для множества правительственных организаций, использующих RSA, который до сих пор считался "невзламываемым", и для любого кто заинтересован в безопсаности своих данных.

Шифрование, однако, только одно возможное применение квантового компьютера. Шор разработал целый набор математических операций, которые могут быть выполнены исключительно на квантовом компьютере. Некоторые из этих операций используются в его алгоритие факторизации. Далее, Фейнман утверждал, что квантовый компьютер может действовать как моделирующее устройство для квантовой физики, потенциально открывая двери ко многим открытиям в этой области. В настоящее время мощь и возможности квантового компьютера, в основном, предмет теоретических рассуждений; появление первого по-настоящему функционального квантового компьютера, несомненно, принесет много новых и волнующих практических применений.

Глава III. Алгоритм Гровера

Задача поиска состоит в следующем: имеется неупорядоченная база данных, состоящая из N-элементов, из которых лишь один удовлетворяет данным условиям -- именно этот элемент нужно найти. Если элемент можно осмотреть, то определение того, удовлетворяет он требуемым условиям или нет, осуществляется за один шаг. Однако база данных такова, что в ней не существует какого-либо упорядочения, которое могло бы помочь выбору элемента. Наиболее эффективный классический алгоритм для этой задачи состоит в проверке элементов из базы данных одного за другим. Если элемент удовлетворяет требуемым условиям, поиск окончен, если нет, то данный элемент откладывается так, так чтобы он вновь не подвергался проверке. Очевидно, что в этом алгоритме требуется проверить в среднем элементов прежде, чем будет найден нужный. [1]

Реализуя данный алгоритм, можно используя то же самое оборудование, как в классическом случае, но задавая вход и выход в виде суперпозиции состояний, можно найти объект за O() квантовомеханических шагов вместо О(N)) классических шагов. Каждый квантовомеханический шаг состоит из элементарной унитарной операции, которые рассмотрим далее.

Для осуществления данного алгоритма нам необходимы следующие три элементарные операции. Первая -- это приготовление состояния, в котором система находится с равной вероятностью в любом из ее N базисных состояний; вторая -- это преобразование Адамара и третья -- выборочный поворот фаз состояний.

Как известно основной операцией для квантовых вычислений является операция М, действующая на один бит, которая представляется следующей матрицей:

т. е. бит в состоянии 0 превращается в суперпозицию двух состояний: (1/, 1/). Аналогично, бит в состоянии 1 трансформируется в (1/,, --1/,), т. е. величина амплитуды для каждого состояния равна 1/,, но фаза в состоянии 1 перевернута. Фаза не имеет аналога в классических вероятностных алгоритмах. Она возникает в квантовой механике, где амплитуда вероятности комплексна. В системе, в которой состояние описывается п битами (т. е. имеется N = 2п возможных состояний), мы можем осуществить преобразование М на каждом бите независимо, последовательно изменяя состояние системы. В случае, когда начальная конфигурация представляла собой конфигурацию с п битами в первом состоянии, полученная конфигурация будет иметь равные амплитуды для каждого из состояний. Это и есть способ создания суперпозиции с той же самой амплитудой для всех состояний.

Третье преобразование, которое нам понадобится, -- это выборочное вращение фазы амплитуды в определенных состояниях. Преобразование, представленное здесь для системы из двух состояний, имеет форму:

где j= и -- произвольные действительные числа. Заметим, что в отличие от преобразования Адамара и других матриц преобразования состояний, вероятность каждого состояния остается той же, т. к. квадрат абсолютной величины амплитуды в каждом состоянии остается прежним.

Рассмотрим задачу в абстрактной форме.

Пусть система имеет N = 2п состояний, которые обозначаются как ,..., . Эти 2п состояния представляются как n-битные строки. Пусть существует единственное состояние, скажем , которое довлетворяет условию C() = 1, тогда как для всех других состояний S, С(,) = 0 (предполагается, что для любого состояния S условие оценивается за единицу времени). Задача состоит в распознании состояния ,

Перейдем собственно к алгоритму

Шаги (1) и (2) являются последовательностью элементарных унитарных операций описаных ранее. Шаг (3) есть завершающее измерение, осуществляемое внешней системой.

(1) Приводим систему в состояние суперпозиции:

с одинаковыми амплитудами для каждого из N состояний. Эта суперпозиция может быть получена за шагов.

(2) Повторим следующую унитарную операцию О( ) раз:

a. Пусть система будет в каком-нибудь состоянии S:

В случае С(S) = 1, повернуть фазу на радиан;

В случае С(S) = 0, оставить систему неизмененной.

b. Применить преобразование диффузии D которое определяется матрицей D следующим образом:, если ;' и . D может быть реализована как последовательное выполнение унитарных преобразований: , где W - матрица преобразований Адамара, R - матрица фазового поворота.

(3) Произвести измерение полученного состоянии. Это состояние будет состоянием С()„ (т. е. искомым состоянием, удовлетворяющим условию (C() = 1) с вероятностью, по крайней мере, не меньшей, чем 0.5. Заметим, что шаг (2а) -- это фазовое вращение. В его реализацию должна быть включена процедура распознания состояния и последующего определения осуществлять или нет поворот фазы. Она должна проводиться таким образом, чтобы не оставлять следа на состоянии системы, так, чтобы была уверенность, что пути, приводящие к тому же самому конечному состоянию, неразличимы и могут интерферировать. Заметим, что эта процедура не включает классического измерения.

Данный квантовый алгоритм поиска, вероятно, будет проще реализовать по сравнению со многими другими известными квантово-механическими алгоритмами, так как необходимые операции -- это только преобразование Уолша-Адамара и операция условного сдвига фазы, каждая из которых относительно проста по сравнению с операциями, используемыми другими квантово-механическими алгоритмами.

Заключение

Сейчас квантовые компьютеры и квантовые информационные технологии остаются в состоянии пионерских разработок. Решение трудностей, с которыми сейчас столкнулись эти технологии, обеспечит прорыв квантовых компьютеров к их законному месту самых быстрых вычислительных машин из всех физически возможных. К сегодняшнему дню исправление ошибок существенно продвинулось, приближая момент, когда мы сможем создавать достаточно надежные компьютеры, способные противостоять эффектам декогеренции. С другой стороны, создание квантового оборудования пока остается только возникающей отраслью; но работа, проделанная на сегодня, убеждает нас, что создание достаточно больших машин, способных выполнять серьезные алгоритмы, например, алгоритм Шора, всего лишь дело времени. Таким образом, квантовые компьютеры обязательно появятся. По меньшей мере, это будут самые совершенные вычислительные устройства, а современные нам компьютеры устареют. Квантовые вычисления берут свое начало в весьма специфических областях теоретической физики, но их будущее, несомненно, окажет огромное воздействие на жизнь всего человечества.

Список литературы

1. Квантовые вычисления: за и против. Под ред. В.А. Садовничего. - Ижевск: Издательский дом «Удмуртский университет», 1999. - 212 с.

2. Белонучкин В.E., Заикин Д.А., Ципенюк Ю.М., Основы физики. Курс общей физики: Учебн. В 2 т. Т. 2. Квантовая и статистическая физика. - М.: ФИЗМАТЛИТ, 2001. - 504 с.

3. Валиев К.А. «Квантовые компьютеры: можно ли их сделать «большими»?», Успехи физических наук, т. 169, № 6, 1999г.

4. Валиев К.А. «Квантовая информатика: компьютеры, связь и криптография», ВЕСТНИК РОССИЙСКОЙ АКАДЕМИИ НАУК, том 70, № 8, с. 688-695, 2000г.

5. Маслов. Д. «Квантовые вычисления и коммуникация: реальность и перспективы», Компьютерра, №46 , 2004г.

6. Халфин Л.А. «Квантовый эффект Зенона», Успехи физических наук, т. 160, № 10, 1990г.

7. Холево А. «Квантовая информатика: прошлое, настоящее, будущее»,

В МИРЕ НАУКИ, №7, 2008г.

8. Centre for Quantum Technologies, National University of Singapore www.quantumlah.org

Страницы: 1, 2, 3



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.