на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Математическое моделирование технического объекта

Математическое моделирование технического объекта

Введение

В современном мире человек уже не представляет себя без компьютерных технологий, которые заполнили почти все сферы человеческой деятельности. Компьютеры помогают нам в работе: от решения простейших задач (создания баз данных и работы с ними, выполнение простейших расчетов и др.), до выполнения трудоемких научных расчетов, которые ранее выполнялись годами, с многочисленными проверками и поправками.

Благодаря компьютерным технологиям разнообразился и наш досуг: огромное количество развивающих игр для детей, прослушивание музыки, просмотр видео и многое другое.

Современные компьютеры позволяют хранить и обрабатывать огромное количество информации, и каждому человеку необходимо знать и уметь, как использовать данную информацию по назначению из ПК, поэтому элементарная компьютерная грамотность является неотъемлемой частью образования.

MathCad - мощный пакет программ, предназначенный для решения различных математических задач с возможностью программирования. Система MathCad занимает лидирующее положение среди всех остальных математических систем. Помимо выполнения своих математических функций система MathCad является очень неплохим текстовым и графическим редактором, по многим параметрам не уступающим специализированным программам.

Система MathCad является на данный момент единственной математической системой, в которой описание решения задач задаётся с помощью привычных математических формул и знаков. Применение системы MathCad при решении прикладных задач технического характера позволило резко повысить скорость расчётов и уровень сложности задач.

В данном курсовом проекте в среде MathCad была составлена математическая модель. Результаты моделирования представлены в виде чисел и графиков.

1 Математическое моделирование технического объекта

1.1 Обзор методов компьютерного моделирования

Моделирование - это процесс замещения объекта исследований некоторой его моделью и проведение исследований на модели с целью получения необходимой информации об объекте. Модель - это физический или абстрактный образ моделируемого объекта, удобный для проведения исследований и позволяющий адекватно отображать интересующие исследователя физические свойства и характеристики объекта.

Различают моделирование предметное и абстрактное. При предметном моделировании строят физическую модель, которая соответствующим образом отображает основные физические свойства и характеристики моделируемого объекта.

Физическое моделирование широко применялось до недавнего времени при создании сложных технических объектов.

Абстрактное моделирование связано с построением абстрактной модели. Такая модель представляет собой математические соотношения, графы, схемы, диаграммы и т. п. Наиболее мощным и универсальным методом абстрактного моделирования является математическое моделирование. Математическое моделирование позволяет посредством математических символов и зависимостей составить описание функционирования технического объекта в окружающей внешней среде, определить выходные параметры и характеристики, получить оценку показателей эффективности и качества, осуществить поиск оптимальной структуры и параметров объекта.

Одним из основных компонентов системы проектирования становится математическая модель. Математическая модель - совокупность математических объектов (чисел, символов, множеств и т. д.) и связей между ними, отражающих важнейшие для проектировщика свойства объекта.

Процесс формирования математической модели и использования её для анализа и синтеза называется математическим моделированием.

Компьютерное моделирование -- это математическое моделирование с использованием средств вычислительной техники. Соответственно, технология компьютерного моделирования предполагает выполнение следующих действий.

1. Определение цели моделирования.

2. Разработка концептуальной модели.

3. Формализация модели.

4. Программная реализация модели.

5. Планирование модельных экспериментов.

6. Реализация плана эксперимента.

7. Анализ и интерпретация результатов моделирования.

Содержание первых двух этапов практически не зависит от математического метода, положенного в основу моделирования, а реализация остальных пяти существенно различается для каждого из двух основных подходов к построению модели.

Существуют два основных подхода к построению модели это аналитический и имитационный.

Аналитическое моделирование предполагает использование математической модели реального объекта в форме алгебраических, дифференциальных, интегральных и других уравнений, связывающих выходные переменные с входными, дополненных системой ограничений. При этом предполагается наличие однозначной вычислительной процедуры получения точного решения уравнений.

При имитационном моделировании используемая математическая модель воспроизводит алгоритм («логику») функционирования исследуемой системы во времени при различных сочетаниях значений параметров системы и внешней среды. Примером простейшей аналитической модели может служить уравнение прямолинейного равномерного движения. При исследовании такого процесса с помощью имитационной модели должно быть реализовало наблюдение за изменением пройденного пути с течением времени.

Концептуальная (содержательная) модель -- это абстрактная модель, определяющая структуру моделируемой системы, свойства ее элементов и причинно-следственные связи, присущие системе и существенные для достижения цели моделирования. Построение концептуальной модели включает следующие этапы.

1. Определение типа системы.

2. Описание рабочей нагрузки.

3. Декомпозиция системы.

На первом этапе осуществляется сбор фактических данных, а также выдвижение гипотез относительно значений параметров и переменных, для которых отсутствует возможность получения фактических данных.

На этапе описания рабочей нагрузки описывается влияние внешних воздействий на эффективность применения данной системы в рамках производимой операции.

На этапе декомпозиции систему доводят до состояния когда для каждого элемента были известны или могли быть получены зависимости его входных характеристик от входных воздействий, существенные с точки зрения выбранного показателя эффективности.

1.2 Основные концепции компьютерного моделирования

Само по себе понятие компьютерное моделирование весьма широкое и каждый автор трактует его по-своему. Встречаются, например, такие выражения: «компьютерное моделирование верхней одежды», «компьютерное моделирование причесок» и т. п. В связи с этим есть необходимость уточнить, что же мы будем понимать под этим термином. Так вот, в данном случае компьютерное моделирование -- это математическое моделирование с использованием средств вычислительной техники. Соответственно, технология компьютерного моделирования предполагает выполнение следующих действий.

1. Определение цели моделирования.

2. Разработка концептуальной модели.

3. Формализация модели.

4. Программная реализация модели.

5. Планирование модельных экспериментов.

6. Реализация плана эксперимента.

7. Анализ и интерпретация результатов моделирования.

Содержание первых двух этапов практически не зависит от математического метода, положенного в основу моделирования (и даже наоборот -- их результат определяет выбор метода). А вот реализация остальных пяти этапов существенно различается для каждого из двух основных подходов к построению модели. Именуются эти подходы в разных книгах по-разному, мы используем для их обозначения термины «аналитическое» и «имитационное» моделирование.

Аналитическое моделирование предполагает использование математической модели реального объекта в форме алгебраических, дифференциальных, интегральных и других уравнений, связывающих выходные переменные с входными, дополненных системой ограничений. При этом предполагается наличие однозначной вычислительной процедуры получения точного решения уравнений.

При имитационном моделировании используемая математическая модель воспроизводит алгоритм («логику») функционирования исследуемой системы во времени при различных сочетаниях значений параметров системы и внешней среды. Примером простейшей аналитической модели может служить уравнение прямолинейного равномерного движения. При исследовании такого процесса с помощью имитационной модели должно быть реализовало наблюдение за изменением пройденного пути с течением времени.

Очевидно, в одних случаях более предпочтительным является аналитическое моделирование, в других -- имитационное (или сочетание того и другого). Чтобы выбор был удачным, необходимо ответить на два вопроса. О С какой целью проводится моделирование? О К какому классу может быть отнесено моделируемое явление?

Ответы на оба эти вопроса могут быть получены в ходе выполнения двух первых этапов моделирования.

Общая цель моделирования в процессе принятия решения была сформулирована в разделе «Общая схема процесса принятия решений» -- это определение (расчет) значений выбранного показателя эффективности для различных стратегий проведения операции (или вариантов реализации проектируемой системы). При разработке конкретной модели цель моделирования должна уточняться с учетом используемого критерия эффективности. Для критерия пригодности модель, как правило, должна обеспечивать расчет значений ПЭ для всего множества допустимых стратегий. При использовании критерия оптимальности модель должна позволять непосредственно определять параметры исследуемого объекта, дающие экстремальное значение ПЭ.

Таким образом, цель моделирования определяется как целью исследуемой операции, так и планируемым способом использования результатов исследования. Например, проблемная ситуация, требующая принятия решения, формулируется следующим образом: найти вариант построения вычислительной сети, который обладал бы минимальной стоимостью при соблюдении требований по производительности и по надежности. В этом случае целью моделирования является отыскание параметров сети, обеспечивающих минимальное значение ПЭ, в роли которого выступает стоимость.

Задача может быть сформулирована иначе: из нескольких вариантов конфигурации вычислительной сети выбрать наиболее надежный. Здесь в качестве ПЭ выбирается один из показателей надежности (средняя наработка на отказ, вероятность безотказной работы и т. д.), а целью моделирования является сравнительная оценка вариантов сети по этому показателю.

Приведенные примеры позволяют напомнить о том, что сам по себе выбор показателя эффективности еще не определяет «архитектуру» будущей модели, поскольку на этом этапе не сформулирована ее концепция, или, как говорят, не определена концептуальная модель исследуемой системы.

1.3 Решение однородных дифференциальных уравнений и систем однородных дифференциальных уравнений в MathCad

При решении дифференциального уравнения первого порядка нужно создать вектор начальных условий из одного элемента Y1, который затем используется при формировании вектора-функции правой части дифференциального уравнения. При обращении к функции rkfixed указывается имя вектора Y, границы интервала, на котором ищется решение уравнения, например, (0 ; 2), количество точек, в которых ищется решение - 100, вектор-функция, описывающая правую часть дифференциального уравнения - D. В результате получается матрица z, в первом столбце которой содержатся значения аргумента искомой функции, во втором - значения самой результирующей функции. При построении графика функции первый столбец полученной матрицы указывается как аргумент, второй столбец - как функция.

При решении системы дифференциальных уравнений нужно создать вектор начальных условий из двух элементов, например, вектор v, который затем используется при формировании вектора-функции правой части дифференциального уравнения. При обращении к функции rkfixed указывается имя вектора v, и границы интервала, на котором ищется решение уравнения, например, (0 ; 5), количество точек, в которых ищется решение - 100, вектор-функция, описывающая правую часть дифференциального уравнения - D. В результате получается матрица s, в первом столбце которой содержатся значения аргумента искомых функций, во втором и третьем столбцах - значения самих функций при соответствующем значении аргумента. При построении графика можно воспользоваться первым столбцом полученной матрицы как аргументом, а вторым и третьим столбцами - как функциями. Для решения уравнения с помощью функции rkfixed нужно выполнить замену переменных и привести дифференциальное уравнение второго порядка к двум дифференциальным уравнениям первого порядка. Вид этих уравнений приведен ниже.

Документ формируется точно так же, как и при решении системы ОДУ.

Решение дифференциальных уравнений первого порядка

Последовательность действий для решения дифференциального уравнения первого порядка такова:

q сформировать вектор начальных условий из одного элемента, присвоив начальное значение искомой функции переменной с индексом, например: или (в зависимости от значения переменной ORIGIN);

q определить вектор-функцию из одного элемента, которая содержит первую производную неизвестной функции:

Страницы: 1, 2



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.