на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Моделі мультиграничної сегментації зображень
b>Публікації. Основні результати дисертаційної роботи надруковано у 10 наукових працях, у тому числі 3 статті у виданнях, що входять до переліків, затверджених ВАК України, та 7 публікацій у збірниках праць міжнародних наукових конференцій.

Структура дисертації. Дисертація складається зі вступу, чотирьох розділів, висновків, списку використаних джерел та додатку. Повний обсяг дисертації становить 146 сторінок; обсяг основного тексту 121 сторінка; 43 рисунка; 7 таблиць; список використаних джерел, що включає 139 найменувань та займає 15 сторінок; додаток на 5 сторінках.

основний зміст роботи

У вступі обґрунтовано актуальність теми, сформульовано мету та задачі дослідження, розкрито наукову та практичну цінність отриманих результатів. Наведено відомості про публікації та апробацію роботи.

У першому розділі проведено аналіз стану й тенденцій розвитку методів сегментації зображень, основною метою яких є виділення областей поля зору, що характеризує значущі об'єкти сцен, а у кінцевому результаті - перетворення растрової візуальної інформації в деяку семантичну конструкцію.

Встановлено, що підходи до сегментації можуть розглядатися з різних позицій - локальні й глобальні методи можуть класифікуватися як порогові просторові, спектральні, гістограмні, текстурні тощо. За математичними моделями, що використовуються, в залежності від виду й обсягу апріорної інформації алгоритми розділяються на детерміновані й статистичні, а в останній час активно розвиваються моделі, які враховують неадекватність і недостовірність інформації, яку отримують із зображення, її надмірність, і в той же час дефіцит, стосовно проблемно-орієнтованої області.

Показано, що сьогодні найбільш поширені: адаптовані алгоритми кластеризації; гістограмні методи; алгоритми на основі пошуку контурних препаратів; методи нарощування областей; алгоритми, які базуються на функціях рівня; методи побудови розбиття графів; різні модифікації перетворень водорозділів; методи, які базуються на моделях або навчаючих вибірках; алгоритми на основі штучних нейронних мереж та інтерактивні алгоритми розміток областей і, головне, всі їх існуючі комбінації. На основі аналізу переваг і недоліків зазначених методів і алгоритмів визначено, що, як і раніше, порогові (просте порогове обмеження, просторово-адаптивні пороги, інтервальні пороги, квазіпорогова обробка, мультиграничні алгоритми) методи можуть забезпечувати у низці прикладних задач потрібну якість сегментації. Методи порогової обробки, незважаючи на їхні недоліки, відіграють досить істотну роль у задачах сегментації зображень. Як першопричину потрібно вказати їхні інтуїтивно зрозумілі властивості та простоту обчислювальних моделей. Проте методи граничної обробки потребують свого розвитку в плані розробки моделей, які забезпечують у деякому розумінні універсальні підходи до аналізу просторів зображень або ознак.

Стосовно інтерактивної та автоматичної обробки візуальної інформації акцент переноситься на розв'язання задачі ліквідації семантичного конфлікту, тобто результати обробки зображень алгоритмів низького рівня, що орієнтовані на обробку зображень як двомірних полів, не завжди придатні для тематичної інтерпретації навіть у конкретних предметних областях. Для усунення цього недоліку необхідно вміти отримувати та трансформувати дані в прийнятну форму, зокрема находити компроміс між недостатньою та надмірною сегментацією. Таким чином, одним із напрямків, які мають теоретичний інтерес та практичну значущість, є моделювання півтонових та/або кольорових зображень на основі зв'язків покриттів (розбиттів) області значень та покриттів (розбиттів) носія.

На основі проведеного аналізу зроблено висновок щодо актуальності створення моделей сегментації на основі багаторівневого представлення зображень за допомогою бінарних відношень ліній рівня та вивчення операцій, які забезпечують адаптацію часткової мультиграничної сегментації до розв'язання задач синтаксичної, семантичної, якісної та кількісної інтерпретації зображень.

У другому розділі запропоновано нові мультиграничні моделі взаємозв'язку результатів сегментації з вихідним зображенням, в основу яких покладено систему відношень, що враховує подібність яскравісних характеристик (ознак). Властивості цих відношень забезпечують ефективну алгоритмізацію сегментації, що в кінцевому результаті надає достовірні дані для етапу інтелектуального аналізу зображень та дозволяє запропонувати нові методи, які враховують просторові властивості.

У полі зору відеодатчика (прямокутної фінітної області ) аналізуються цифрові форми подання зображень, тобто функція розподілу яскравості набуває тільки повнозначних числових значення у вузлах сітки розміру . Для спрощення запису (з урахуванням построкової розгортки) носій зображення представлений множиною , де . Тоді зображення при довільному законі квантування з рівнями визначається множиною

.

Розглянемо покриття діапазону значень , де , , , , , . Функція і покриття індукують на бінарне відношення, яке є відношенням толерантності.

(1)

де

З іншого боку, відношення реалізує багатозначні відображення з в , які продукують ліві та праві суміжні класи:

- клас образів елемента ;

- клас прообразів елемента .

Система класів толерантності утворює покриття множини . Довільне покриття названо правильним, якщо й тільки якщо для будь-яких його двох елементів і виконуються відношення і .

Твердження 1. Класи толерантності утворюють правильне покриття множини .

Довільне покриття скінченної множини названо впорядковано зв'язним, якщо існує індексація, при якій у будь-якому представнику покриття втримуються тільки занумеровані підряд (без пропусків) елементи, тобто , , . Довільна трійка різних елементів множини із заданим на ній покриттям названа транзитивним триплетом, якщо будь-яка пара точок лежить хоча б у одному елементі покриття.

У загальному випадку будь-яка пара аналогічно (1) індукує на множині відношення толерантності, а саме

Вивчені властивості правильних і впорядковано зв'язних покриттів.

Властивість 1. Для будь-якої пари елементів впорядковано зв'язного, правильного покриття існує хоча б один нетранзитивний триплет, який належить до їхнього об'єднання , два елемента якого не належать одному елементу покриття, тобто

.

Властивість 2. Якщо для будь-якої пари елементів довільного покриття існує нетранзитивний триплет , який лежить у їхньому об'єднанні, то це покриття правильне.

Властивість 3. Довільне розбиття скінченної множини є впорядковано зв'язним покриттям.

Довільне бінарне відношення , яке задане на множині , названо функціональним, якщо задана деяка функція , а на задано покриття і , де , .

Твердження 2. Функціональне відношення не зміниться, якщо з покриття, що його індукує, будуть вилучені всі неправильні елементи.

Ці результати створили передумови для вивчення питань взаємозв'язку завдання покриттів значень функцій розподілу яскравості і результатів сегментації.

На питання, коли суміжні класи і класи толерантності збігаються для функціональних відносин, відповідь дає

Твердження 3. Класи образів і прообразів заданого на довільній множині функціонального відношення , індукованого функцією і деяким упорядковано зв'язним покриттям , є класами толерантності тоді і тільки тоді, коли - розбиття.

Інтерпретація доведеного твердження прозора - при раціональному розбитті діапазону зміни функції розподілу яскравості можна одержати "області подібності" на носії зображення у вигляді класів толерантності, які трактуються доволі просто.

Використання впорядкованого зв'язного покриття є принциповим, тобто якщо його виключити із розгляду, то збіг класів образів і класів толерантності не гарантує, що є розбиттям.

На питання про зв'язок класів толерантності й суміжних класів відповідає

Твердження 4. Будь-який суміжний клас довільного толерантного відношення містить підмножину - клас толерантності, якому належить елемент, що породжує цей суміжний клас.

Побудова обчислювальних моделей базується на такому результаті.

Твердження 5. Якщо матриця довільного толерантного відношення має блочний вигляд, то покриття і , які утворені відповідно суміжними і толерантними класами, є впорядковано зв'язними. При цьому - правильне покриття, а - правильне тоді і тільки тоді, коли суміжні класи або класи толерантності не перетинаються для елементів, які мають різні образи, і фактично збігаються.

Будь-яка функціональна толерантність, яка індукована відображенням , яке можна трактувати як зображення, тобто функцією розподілу яскравості у полі зору, ставить у відповідність кожному елементу покриття бінарні відношення на множині

де , , , .

Оскільки відображення є відображенням у множині , довільний елемент має повний прообраз - так називані лінії рівня . Якщо розглянути при відображенні всіх елементів покриття , то по кожному фіксованому елементу покриття отримаємо об'єднання всіх ліній рівня його елементів, тобто

.

Це відношення є відношенням еквівалентності, продукуючи клас еквівалентності правилом

. (2)

Відзначимо, що класи є передкласами толерантності, оскільки складаються із парних толерантних елементів. Система передкласів , яка індукована еквівалентностями (правилом (2), буде в просторі функціональної толерантності базисом, тобто відповідати умовам

Твердження 6. Для довільної функціональної толерантності , яку задали на скінченній множині , покриття із повних прообразів є базисом у просторі толерантності за умови, що вихідне покриття є впорядковано зв'язним і базисним.

Спільна обробка покриттів, отриманих різними шляхами, дозволяє отримати додаткову інформацію для побудови розбиттів, що найточніше відповідають об'єктам, які шукаються. Отримані результати являють собою основу для введення операцій між покриттями і критеріїв переходу до розбиттів, адекватних структурі сцен, що спостерігаються.

Третій розділ. Після одержання часткової сегментації зображень головним завданням стає трансформація класів еквівалентності або толерантності для забезпечення передумов тематичної інтерпретації візуальної інформації. У розділі запропоновано методи перетворень розбиттів і покриттів поля зору.

Сегментовані зображення представлені у вигляді , де , при аналізі розбиття і під час обробки покриття. Внаслідок сегментації класи еквівалентності або толерантності розмічені, тобто існує індексуюче відображення таке, що . Розглянуто операції, що відповідають умовам

, (3)

, (4)

, (5)

. (6)

Умова (3) вказує на існування необхідного відображення. Умова адитивності (4) разом з умовою монотонності (5) гарантує можливість пофрагментної обробки. Умова (6) забезпечує обробку декількох множин, що визначають сегментоване зображення. Якщо відображення взаємно однозначне, то включення (6) переходить у рівність. Як другий операнд можуть використовуватися або елементи множини , або інші результати сегментації , або деякі фіксовані множини , які передбачають акцентування або фільтрацію тих або інших властивостей. На сегментованих зображеннях виділені межі окремих областей , а також їхні внутрішні частини .

Для маніпуляцій з розбиттями (покриттями) як базові обрані операції алгебри Мінковського на площині. По-перше, результати сегментації є замкнутими щодо операцій алгебри Мінковського, по-друге, додавання і віднімання Мінковського, де операнди - довільні множини, що задовольняють умовам (3) - (6).

Якщо фіксувати просторову форму й структуру однієї з множин, то можна одержувати підмножини із заданими властивостями (стосовно обробки результатів сегментації одержуємо бінарну морфологію).

Як базові операції використані операції бінарної морфології: і - розширення і звуження відповідно. Тут - множина, яка фіксується і має назву структурний елемент, .

Часто при трансформаціях розбиттів або покриттів корисними виявляються операції визначення внутрішніх частин і замикання , оскільки: багаторазове використання одних і тих самих операцій і не міняє результату; завжди ; операція видаляє дрібні об'єкти і тонкі частини великих об'єктів, приводить до розділення об'єктів, які з'єднані тонкими лініями, тобто реалізує деякі елементарні алгоритми фільтрації; операція заповнює мілкі отвори в об'єктах, об'єднує найближчі об'єкти, тобто при відповідному виборі прототипів аналіз багатозв'язних об'єктів можна зводити до обробки однозв'язних областей.

Якщо використовувати і як структурні елементи, отримуємо ортогональні () або ізотропні () межі. Застосовуючи розклад чотиризв'язності , де , , отримуємо горизонтальні та вертикальні складові межі.

Маніпуляції із сегментованими зображеннями (об'єднання розбиттів із метою огрублення областей інтересу, їхнє перетинання для підвищення ступеня деталізації й т. ін.) можуть дозволити знаходити розумний компроміс між надмірною і недостатньою сегментацією. Для визначення операцій із сегментованими зображеннями введемо характеристичну функцію класу еквівалентності

Необхідно вказати граничні умови , і своєрідну подвійність введених відношень .

Страницы: 1, 2, 3



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.