на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Matlab
p align="left">Из графика видно, что v(k) действительно сходятся к a=0.8, как и должно быть согласно теории, которая здесь выглядит очевидной.

Теперь будем варьировать начальное приближение, выполняя строки 1 и 3.

(a) xt=1.5, 1.9, 1.99, 1.9999. При последних двух значениях xt на графике из строки 3 появятся осцилляции справа, так как здесь разности x(k+1)-x(k) и тем самым значения v(k) теряют точность: x(k) уже сошлись со многими знаками.

(a') xt=2 . График из строки 2 вообще пуст, потому что тогда все v(k)=0/0=NaN.

(b) xt=2.01, 2.5, 2.9, 2.99, 2.9999. В последнем случае x(k) вначале довольно долго (до k=20) задерживаются в районе неподвижной точки x2=3 (они все время уходят от нее, но на графике этого не видно), а затем примерно за 60 итераций монотонно движутся к x1=2.

(b') xt=3 . Все x(k)=3, а график из строки 3 пуст. Это произошло потому, что при xt=3 F(xt)=15/5=3 получается без ошибок округления.

(b'') xt=3.01 . Пределами для x(k) и v(k) будет inf, так что x2=3 является неустойчивой неподвижной точкой преобразования F: при малейшем сдвиге x0 с x2 в пределе итераций получится либо устойчивая неподвижная точка x1, либо inf - приобретенная неподвижная точка. Проварьируем этот сдвиг:

(с) xt=3+1e-15, 3+1e-14, 3+1e-8 . В 1-м варианте ухода xt не происходит, во 2-м тенденция ухода уже зародилась и он неизбежно произойдет с увеличением числа итераций, в 3-м уход проявился в полной мере уже на 100 итерациях.

(с') xt=-2.5, -2.9, -2.99, -3, -3.01, -100, 100 . При xt=-3 снова получим x2 за одну итерацию, а при xt= -3.01 и далее получим inf. Таким образом, при вещественном x0 итерации сходятся к устойчивой неподвижной точке x1=2 при -3<x0<3 и к inf при |x0|>3. Просчитаем тот случай, когда |x0|=3. Этот расчет выполняется строкой (редактируем строку 1)

4;n=100; fi=-pi:pi/20:pi; xt=3*exp(i*fi); TF='(xt.^2+6)/5'; for k=1:n,xt=eval(TF);end, plot(xt,'.')

На графике (он комплекснозначный) видны 4 точки: точка z=3, точки z=3s*i с малым s>0 и точка z=2. Чтобы разобраться в результате, выполним строку 4 с n=1000 и, сделав окно MATLAB'а полным, выдадим

5;imag(xt')

Образы первой и последней точки начальной окружности слегка отличаются от z=2, а ее 21-я точка (она соответствует fi=0) есть z=3. Это получилось потому, что sin(pi) и sin(-pi) не равны нулю в точности. Снова сделаем окно MATLAB'а небольшим и выполним строку 4 с радиусом 3.01, а затем строки

6;sum(isnan(xt))

7;find(isnan(xt))

и получим, что точки первоначальной xt с номерами 1, 21, 41 обращаются в inf (здесь nan=inf/inf). Для радиуса 5 их будет 21, для радиуса 5.6 их будет 41, т.е. все.

Границу области сходимости обычно трудно исследовать аналитически, даже в таком простом примере, как этот, и сама она не определяется из условия |F'(x)|=1 или |x|=2.5. Условие |F'(X)|<1 гарантирует устойчивость неподвижной точки X преобразования F(x), условие |F'(X)|>1 является достаточным для ее неустойчивости, а в случае |F'(X)|=1 она может быть как устойчивой, так и неустойчивой. Неустойчивые неподвижные точки сравнительно редки в вычислительных задачах, но их полезно иметь в виду при исследовании численных алгоритмов. В нашем случае мы установили только, что множество |x|3 принадлежит области сходимости итераций F, но вовсе не описали границу этой области. Мы установили также, что при |x|5.6 итерации сходятся к inf, и поэтому inf является устойчивой неподвижной точкой F. Чтобы получить представление о границе области сходимости, выполним строки

8;r=3:.1:5.6; z=[];n=100; for kr=r,xt=kr*exp(i*fi); for k=1:n,xt=eval(TF); end,z=[z;xt]; end

9;zn=isnan(z); Z=r'*exp(i*fi); plot(Z(zn)), axis equal

и увидим приближенный график границы - это вовсе не окружность. Комагнда axis equal выбирает по осям одинаковый масштаб (это действует только на текущий plot; у команды axis много других опций). Чтобы построить границу аккуратнее, выполним строку 4 с шагом по fi, равным pi/180, затем строку 8 с r=3:.02:5.6 и строку 9. Получим график границы, выполнив строки

10;zn=isnan([z;z(end,:)]); zn=diff(zn)~=0; plot(Z(zn)), hold on

11;y=3*exp(i*fi); plot(y,'m'), axis equal, hold off

и увидим отличие области сходимости от круга |z|3.

Найдем те точки, которые перейдут в z=3 на первых 10 итерациях. Для этого придется рассмотреть обратное к F преобразование x=(5y-6)^.5 и сделать с ним 10 итераций, задав начальное значение y=3. Строка

12;n=10; yt=3; for k=1:n,yt=(5*yt-6).^.5; yt=[yt,-yt];end, plot(yt,'.')

показывает, что при этом получится практически та же линия, что и в строке 10. Удивительно, что это верно и для других точек z из области сходимости преобразования F, но с некоторыми вкраплениями внутрь области сходимости. Брать n большим нельзя, так как в конце длина вектора yt равна 2n.

2.Теперь представим (2) в виде

x=F(x), где y=F(x)=5-6/x, так что F'(x)=6/x2 , F'(3)=2/3<1, |F'(x)|<1 при |x|>2.45.

Следовательно, устойчивая неподвижная точка - это x0=3. Получим резултат сразу для "всех" вещественных x0=xt:

1;n=100; xt=-5:.5:5; x=xt; TF='5-6./xt'; for k=1:n,xt=eval(TF);end, plot(x,xt,'.')

Все пределы равны 3, выпадает только неустойчивая точка xt=2, для которой итерации опять идут без ошибок округления. Возникает предположение, что вся комплексная плоскость с выколотой точкой x1=2 стягивается итерациями в точку x2=3, хотя не везде |F'(x)|<1. Посмотрим, как это можно увидеть на графике, выполнив программу

2;n=4; fi=-pi:pi/20:pi; xt=4*exp(i*fi); TF='5-6./xt'; z=xt;

3;for k=1:n, xt=eval(TF); z=[z;xt];end, plot(z','.'), axis equal

Начальное приближение (окружность радиуса 4 с центром в нуле) итерируется 4 раза и все результаты выдаются на график. Окружности (на графике их 5) довольно быстро стягиваются в точку x2=3. Применим zoom, чтобы посмотреть малые окружности.

Сделаем разрезы на начальной окружности:

4;n=4; fi=-pi:pi/20:pi*.75; fi(end-4)=[]; xt=4*exp(i*fi); TF='5-6./xt'; z=xt;

и снова выполним строку 3. Мы увидим, что 1-я итерация меняет направление обхода окружности на противоположное, остальные - нет. Выполним строку 4 с n=20 и затем строку 3. С помощью zoom дойдем до самой малой окружности (она белого цвета) и убедимся, что она лежит правее точки z=3 примерно в полосе от 3.0001 до 3.0004.

Потерь и приобретений других неподвижных точек здесь нет.

3. Решим нашу задачу методом Ньютона. Если x'' удовлетворяет уравнению f(x'')=0, а x' находится вблизи x'' и используется для приближенной аппроксимации f(x''), то

0=f(x'')=f (x')+f'(x')(x''-x') или x''=x'-f(x')/f'(x') при условии, что f'(x'')0 и тем самым f'(x')0.

Это и есть итерации по Ньютону для уравнения f(x)=0. При переходе к индексной форме записи для f(x)=x2-5x+6 и f'(x)=2x-5 из (2) получим

x(k+1)=x(k)-f(x(k))/f'(x(k)) или y=F(x), где F(x)=x-f(x)/(f'(x), F'(x)=2f(x)/(f'(x))2 .

Так как f'(x1,2)0, можно использовать эти итерации по Ньютону (часто их называют методом касательной), а поскольку F'(x1,2)=0, следует ожидать их быстрой сходимости и того, что теперь оба решения x1,2 будут устойчивыми неподвижными точками итерационного преобразования F. Неподвижной точкой будет и inf, но она "не наша", и природа ее, как мы увидим ниже, гораздо сложнее.

Выделим TF в отдельную строку и проведем наши стандартные вычисления

1;TF='xt-(xt.^2-5*xt+6)./(2*xt-5)';

2;xt=0; n=100; x=xt; for k=1:n,xt=eval(TF); x=[x,xt];end, plot(x), grid

3;w=2:n; v=(x(w+1)-x(w))./(x(w)-x(w-1)); plot(v), grid

Предел итераций при x0=0 равен 2, а сходимость имеет порядок выше первого, поскольку v(k) до потери ими точности успели подоойти к нулю. Чтобы определить порядок сходимости, отредактируем строку 2 на предмет оценки квадратичной сходимости:

4;w=2:n;v=(x(w+1)-x(w))./(x(w)-x(w-1)).^2; plot(v(1:6)), grid

Теперь до потери точности v(k) успевают подойти к 1 (у v(7) точность уже потеряна), так что сходимость итераций здесь квадратичная. Напомним, что точность теряется у v(k), но не у x(k). Чтобы увидеть потерю точности у v(k), выполним строку 4, выдавая в plot 7 точек.

При x0=4 предел итераций равен 3, а v(k) успевают подойти к -1 (у v(6) точность уже потеряна). Таким образом, в зависимости от начального приближения x0=xt итерации могут сходиться к обоим решениям задачи.

Так как теперь преобразование y=F(x) уже не является дробно-линейным, рассмотрим трансформацию комплексной прямоугольной области в процессе итераций. Создадим такую область xt из 412=1681 комплексных точек и проитерируем ее (при этом в командном окне будет много сообщений о делении на нуль):

5;x=-10:.5:10; [X,Y]=meshgrid(x); xt=X+i*Y; n=100; for k=1:n,xt=eval(TF);end, plot(xt,'.')

На графике будут оба решения задачи и некоторое множество точек на прямой Re(z)=2.5. Сделаем только 10 итераций и вставим выдачу графика на каждой итерации:

6;x=-10:.5:10; [X,Y]=meshgrid(x); xt=X+i*Y;n=10; for k=1:n,xt=eval(TF); plot(xt,'.'), pause(0), end

Конечный результат тот же, что и при 100 итерациях, но видна динамика его формирования.

Полуплоскость Re(z)<2.5 стягивается итерациями в точку x1=2, а полуплоскость Re(z)>2.5 - в точку x2=3: прямая Re(z)=2.5 переходит сама в себя. Точка x1=2 имеет красный цвет потому, что в нее перешли первые 25 столбцов матрицы xt, а остаток rem(25,7)=4, но 4-й цвет - красный. Далее идут зеленые точки (26-й столбец) и синяя x2=3, поскольку rem(41,7)=6 и 6-й цвет - синий. Но всегда лучше проверить такие выводы численно: найдем

7;z=xt(:); [sum(abs(z-2)<.1), sum(abs(z-3)<.1), sum(abs(real(z)-2.5)<.1)]

(=1025=41*25), (=615=41*15), (=38<41 на 3).

Так как потерь в матрице-таблице xt MATLAB не допускает, выясним, во что перешли эти 3 точки - в inf или NaN:

8;z=xt(:,26); [sum(isinf(z)), sum(isnan(z))] =0, =3 .

Индексы этих трех точек из 26-го столбца находятся командой

9;find(isnan(z))' =20 21 22 ,

и это есть точки

z1=2.5-0.5i, z2=2.5, z3=2.5+0.5i.

Теперь разберемся, как преобразуется итерациями F прямая Re(z)=2.5. Так как прямая Re(z)=2.5 переходит в себя, ее можно параметризовать с помощью переменной y=Im(z), и пусть yk=Im(Fk(Re(z)=2.5), k=1, 2,... , т.е. после k итераций y переходит в yk(y). Ясно, что на k-й итерации в inf перейдут только те точки из всего множества yk-1, которые равны нулю. Поскольку -inf<y<inf, на 1-й итерации это случится только с одной точкой z1=2.5 (для нее y=0). Выдадим на график y1 после 1-й итерации:

10;xt=2.5+(-10:.1:10)'*i; y=imag(xt); n=1; for k=1:n,xt=eval(TF);end, plot(y,imag(xt)), grid

и увидим, что функция y1(y) пересекает ось абсцисс только два раза (при этом y1 дважды непрерывно пробегает от -inf до inf), так что на 2-й итерации в inf перейдут только две точки (это уже известные нам z1=2.5-0.5i, и z3=2.5+0.5i). Выполним строку 10 с n=2 и снимем с графика строкой

11;q=ginput;q(:,1)'

четыре точки пересечения кривой y2(y) с осью абсцисс: приближенно это -1.2079 -0.2056 0.2055 1.2079,

тогда как для y1(y) это были значения -0.5 и 0.5. Каждая переходящая в inf на k-й итерации точка порождает слева и справа от себя две такие точки, которые перейдут в inf на (k+1)-й итерации. Поэтому с ростом k точки yk(y)=0, с одной стороны, уходят в обе стороны от нуля, а с другой - все чаще появляются в тех местах, где они однажды уже появились. Всего на k-й итерации в inf перейдет 2k-1 точек. В действительности с ростом k они всюду плотно заполняют прямую Re(z)=2.5, а между ними yk(y) непрерывно пробегает все значения от -inf до inf. Чтобы быть в этом уверенными, выполним последнюю программу

12;hy=1.0033e-4; xt=2.5+(-1:hy:1)'*i; w=2:length(xt); n=100; for k=1:n,xt=eval(TF); end

Страницы: 1, 2, 3, 4, 5



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.