на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Обработка изображений с использованием расширения процессора
ри сохранении вещественных значений в памяти, значения с одинарной точностью сохраняются в памяти в 4 последовательных байтах. 128-битный режим доступа используется для 128-разрядной выборки из памяти, 128-разрядной пересылки между SSE регистрами с плавающей запятой и всеми логическими, распаковки и арифметическими командами. 32-битный режим доступа используется для 32_разрядной выборки из памяти, 32-разрядной пересылки между SSE регистрами с плавающей запятой и скалярными арифметическими командами.

Таблица 2-2. Вещественные числа и кодирование NaN

SIMD регистр состояния и управления

Регистр состояния и управления используется для установки флагов обнаружения арифметических исключений, флагов режимов обработки арифметических исключений, режима округления, режима flush-to-zero и для просмотра флага состояния. Содержимое этого регистра может быть загруженно с помощью инструкций LDMXCSR и FXRSTOR и сохранено в памяти с помощью инструкций STMXCSR и FXSAVE.

Биты 0-5 (поле обнаружения исключений) содержат 6 флагов, которые служат признаками детектирования арифметических SIMD исключений с плавающей точкой (0-нет, 1-да). Исключение произойдет только после следующей команды SSE. Потоковое расширение SSE использует только один флаг исключения для каждой исключительной ситуации. Здесь не предоставляется возможность для уведомления об индивидуальных исключительных ситуациях внутри упакованных данных. В ситуации, когда происходит несколько идентичных исключительных ситуаций в одной инструкции, соответствующий флаг исключения обновляется и указывает, что хотя бы одно из этих условий произошло. По умолчанию эти флаги сбрасываются.

Биты 7-12 (поле маскирования исключений) определяют, как обрабатываются обнаруженные исключения. Если флаг установлен, то соответствующее исключение маскировано и обрабатывается процессором, который формирует приемлемый результат (в соответствии с процедурой, установленной по умолчанию) и продолжает выполнение программы. Если флаг сброшен, то вызывается программный обработчик для этого исключения. По умолчанию флаги устанавливаются в 1, значит что все исключения маскированы.

Биты 13-14 (RC) устанавливают режим округления результатов при выполнении SSE-команд над данными с плавающей точкой. По умолчанию устанавливается режим округление до ближайшего.

Бит 15 (FZ) используется для включения режима “Flush To Zero”. По умолчанию бит 15 установлен в 0, что выключает режим “Flush To Zero”.

Остальные биты регистра MXCSR (биты 16-31 и бит 6) определены как зарезервированные и установлены в 0; попытка записи не нулевых значений в эти биты, используя инструкцию FXRSTOR или LDMXCSR, вызовет исключение общего нарушения защиты (general protection exception).

Поле управления округлением

Поле управления округлением (RC) регистра MXCSR (биты 13 и 14) управляют как округляется результат инструкции с плавающей точкой.

Поддерживается четыре режима округления:

· округление до ближайшего

· до меньшего или равного

· до большего или равного

· и в сторону нуля (смотреть таблицу 2-3).

Округление до ближайшего - режим по умолчанию и он подходит для большинства приложений. Он обеспечивает наиболее точный и статистически несмещенную оценку правильного результата.

Таблица 2-3. Поле управления округлением (RC)

Режим округления

Установка полей RC

Описание

Округление до ближайшего

00B

Результатом округления берется наилучшее приближение до точного результата. Если два значения одинаково близки к точному результату, то берется четное значение (то есть, то значение у которого наименьший значащий разряд установлен в ноль)

Округление до меньшего или равного (в сторону -?)

01B

Результат округления ближайшее, но не больше чем точное решение.

Округление до большего или равного (в сторону +?)

10B

Результат округления ближайшее, но не меньше чем точное решение.

Округление в сторону нуля (усечение)

11B

Результат округления ближайшее, но не больше чем абсолютное значение точного решения.

Команды Потокового Расширения SIMD

Потоковое Расширение SIMD состоит из 70 команд, сгруппированных в следующие категории:

· Команды копирования данных

· Арифметические команды

· Команды сравнения

· Команды преобразования типов данных

· Логические команды

· Дополнительные целочисленные SIMD-команды

· Команды перестановки

· Команды управления состоянием

· Команды управления кэшированием

Операнды команд

Параллельные операции, как правило, действуют одновременно на все четыре 32-разрядных элемента данных в каждом из 128-разрядных операндов В именах команд, выполняющих параллельные операции, присутствует суффикс ps. Например, команда addps складывает 4 пары элементов данных и записывает полученные 4 суммы в соответствующие элементы первого операнда.

Скалярные операции действуют на младшие (занимающие разряды 0-31) элементы данных двух операндов Остальные три элемента данных в выходном операнде не изменяются (исключение составляет команда скалярного копирования movss). В имени команд, выполняющих скалярные операции, присутствует суффикс ss (например, команда addss).

Большинство команд имеют два операнда. Данные, содержащиеся в первом операнде, могут использоваться командой, а после ее выполнения, как правило, замещаются результатами. Данные во втором операнде используются в команде и после ее выполнения не изменяются. Далее в тексте входным называется второй операнд, а выходным - первый.

Для всех команд адрес операнда в памяти должен быть выровнен по 16-байтной границе, кроме не выровненных команд сохранения и загрузки.

Пример программы с использованием SSE

Программа выполняет изменение значения цветовых составляющих каждого пикселя картинки (загружаемой с жесткого диска) для применения эффекта размытия.

1. Изображение загружается (посредством диалогового окна) в компоненту «TImage».

2. (после выбора пунктов «операции - Размытие Г.») Проверяется на соответствие формату 24 бита на пиксель.

3. В специальном диалоговом окне, вводится опции (радиус зерна размытия), и запускается обработка изображения.

4. Рассчитывается зерно размытия картинки по установленным параметрам, где производится расчет (списка весов) в несколько этапов.

5. выделяется память для обработки изображения попиксельно, а также для обработки строк.

7. копируется изображение в память ЭВМ.

8. построчно производим эффект гауссово размытия к цветовым составляющим каждого пикселя.

9. теперь каждую колонку с помощью созданного списка весов создаем эффект размытия.

10. обработанные данные записываются в результативный компонент «TImage».

11. освобождается выделенная память для скопированного изображения и обработки строк.

12. (по выбору пункта «операции - сохранить» на вкладке «результат») данные результативного изображения сохраняются в файл.

Листинг программы

const

MaxKernelSize = 64;

delay_names = 'миллисекунд';

//for image

PRGBTriple = ^TPxlC;

TPxlC = record//TPxlC

b:byte;

g:byte;

r:byte;

end;

PRow = ^TRow; //массив картинки

TRow = array[0..1000000] of TPxlC;

PPRows = ^TPRows; //массив строки пикселей

TPRows = array[0..1000000] of PRow;

TKernelSize = 1..MaxKernelSize;

TKernel = record //зерно

Size: TKernelSize; //размер зерна

Weights: array[-(MaxKernelSize-1)..MaxKernelSize] of single;

end;

TXMMSingle = array[0..3] of Single;//массив для SSE

TXMMArrByte = array[0..15] of byte;//массив пикселей

TXMMRsByte = record

item:TXMMArrByte;

end;

TSSERegLines = array[0..5] of TXMMRsByte;

//основная процелура размытия

procedure GBlur(theBitmap: TBitmap; radius: double; withSSE:boolean);

var

frm_img: Tfrm_img;

implementation

uses DateUtils, optscopyimg, optsblurimg;

{$R *.dfm}

const

MAX_imageSize = 65535;

//построение зерна (списка весов) размытия (без SSE)

//MakeGaussianKernel noSSE-----------------------------------------------------

procedure MakeGaussianKernel(var K: TKernel; radius: double;

MaxData, DataGranularity: double);

//Делаем K (гауссово зерно) со среднеквадратичным отклонением = radius.

//Для текущего приложения мы устанавливаем переменные MaxData = 255,

//DataGranularity = 1. Теперь в процедуре установим значение

//K.Size так, что при использовании K мы будем игнорировать Weights (вес)

//с наименее возможными значениями. (Малый размер нам на пользу,

//поскольку время выполнения напрямую зависит от

//значения K.Size.)

var

j: integer;

temp, delta: double;

KernelSize: TKernelSize;

a,b:smallint;

begin

//получили строку весов (зерна)

for j:=Low(K.Weights) to High(K.Weights) do begin

temp := j / radius;

K.Weights[j] := exp(-(temp * temp) / 2);

end;

//делаем так, чтобы sum(Weights) = 1:

temp:=0;

for j := Low(K.Weights) to High(K.Weights) do

temp := temp + K.Weights[j];//все сумировали

for j := Low(K.Weights) to High(K.Weights) do

K.Weights[j] := K.Weights[j] / temp;//делим каждое на сумму (нормирование)

//теперь отбрасываем (или делаем отметку "игнорировать"

//для переменной Size) данные, имеющие относительно небольшое значение -

//это важно, в противном случае смазавание происходим с малым радиусом и

//той области, которая "захватывается" большим радиусом...

KernelSize := MaxKernelSize;

delta := DataGranularity / (2 * MaxData);

temp := 0;

while (temp < delta) and (KernelSize > 1) do

begin

temp := temp + 2 * K.Weights[KernelSize];

dec(KernelSize);

end;//выравнивание

K.Size := KernelSize;

//теперь для корректности возвращаемого результата проводим ту же

//операцию с K.Size, так, чтобы сумма всех данных была равна единице:

temp := 0;

for j := -K.Size to K.Size do

temp := temp + K.Weights[j];//

for j := -K.Size to K.Size do

K.Weights[j] := K.Weights[j] / temp;//

end;

//построение зерна (списка весов) размытия с SSE

//MakeGaussianKernel SSE-------------------------------------------------------

procedure MakeGaussianKernelSSE(var K: TKernel; radius: double;

MaxData, DataGranularity: double);

//Делаем K (гауссово зерно) со среднеквадратичным отклонением = radius.

//Для текущего приложения мы устанавливаем переменные MaxData = 255,

//DataGranularity = 1. Теперь в процедуре установим значение

//K.Size так, что при использовании K мы будем игнорировать Weights (вес)

//с наименее возможными значениями. (Малый размер нам на пользу,

//поскольку время выполнения напрямую зависит от

//значения K.Size.)

const

nmax=3;

var

j: integer;

temp, delta: double;

KernelSize: TKernelSize;

xmm_n,xmm_r,xmm_a:TXMMSingle;

_low,_high,na:smallint;

begin

_low:=Low(K.Weights);

_high:=High(K.Weights);

j:=_low;

for na:=0 to nmax do xmm_a[na]:=2;//константа 2

for na:=0 to nmax do xmm_r[na]:=radius;//радиус

asm

push eax

push ebx

push ecx

push edx

movups xmm0,xmm_a//2 в SSE

movups xmm1,xmm_r//радиус в SSE

end;

while (j<=_high) do begin

for na:=0 to nmax do

if ((j+na)<=_high) then

xmm_n[na]:=j+na

else break;

//копирование простое и передача не дает оптимизации в SSE

asm

movups xmm2,xmm_n //j

divps xmm2,xmm1 //j/radius

movups xmm_n,xmm2

mulps xmm2,xmm2 //temp^2

movups xmm_n,xmm2

divps xmm2,xmm0 //temp*temp/2

movups xmm_n,xmm2

end;//asm

for na:=0 to nmax do begin

if (j<=_high) then

K.Weights[j]:=exp(-xmm_n[na])

else break;

inc(j);

end;//for

end;//while

//получили строку весов (зерна)

//делаем так, чтобы sum(Weights) = 1:

temp:=0;

for j := Low(K.Weights) to High(K.Weights) do

temp := temp + K.Weights[j];//все сумировали

for j := Low(K.Weights) to High(K.Weights) do

K.Weights[j] := K.Weights[j] / temp;//делим каждое на сумму (нормирование)

for na:=0 to nmax do xmm_n[na]:=temp;

asm

movups xmm0,xmm_n;

end;

j:=_low;

while (j<=_high) do begin

for na:=0 to nmax do begin

if ((j+na)<=_high) then

xmm_n[na]:=K.Weights[j+na]

else break;

end;//for

asm

movups xmm1,xmm_n

divps xmm1,xmm0//K.Weights[j]/temp

movups xmm_n,xmm1

end;

for na:=0 to nmax do begin

if (j<=_high) then

K.Weights[j]:=xmm_n[na]

else break;

inc(j);

end;

end;//while

//отбрасываем (или делаем отметку "игнорировать"

//для переменной Size) данные, имеющие относительно небольшое значение -

//это важно, в противном случае смазавание происходим с малым радиусом и

//той области, которая "захватывается" большим радиусом...

KernelSize := MaxKernelSize;

delta := DataGranularity / (2 * MaxData);

temp := 0;

while (temp < delta) and (KernelSize > 1) do

begin

temp := temp + 2 * K.Weights[KernelSize];

dec(KernelSize);

end;//выравнивание

K.Size := KernelSize;

//для корректности возвращаемого результата проводим ту же

//операцию с K.Size, так, чтобы сумма всех данных была равна единице:

temp := 0;

for j := -K.Size to K.Size do

temp := temp + K.Weights[j];

for na:=0 to nmax do xmm_n[na]:=temp;

asm

movups xmm0,xmm_n;

end;

j:=_low;

while (j<=_high) do begin

for na:=0 to nmax do begin

if ((j+na)<=_high) then

xmm_n[na]:=K.Weights[j+na]

else break;

end;//for

asm

movups xmm1,xmm_n

Страницы: 1, 2, 3



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.