на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Постановка и решение транспортной параметрической задачи
p align="left">3. Таблицу "План перевозок" создать с пустыми полями (заполненными единицами), заранее заданного числового формата. В ячейках запасов (потребностей) каждого поставщика (потребителя) ввести формулу, выполняющую суммирование всех возможных поставок этого поставщика (потребителя).

Рис. 3.2. Фрагмент окна программы Ms Excel: Модель таблицы «План перевозок».

4. В ячейке целевой функции ввести формулу, высчитывающую сумму произведений элементов матрицы "Стоимость перевозок" и соответствующих элементов матрицы "План перевозок".

5. В диалоговом окне функции "Поиск решения" установить необходимые ограничения, в целевой ячейке указать адрес ячейки с формулой целевой функции и установить ее равной минимальному значению, в качестве изменяемых ячеек выбрать диапазон всех элементов матрицы "План перевозок". Ограничения в "Поиске решений" заключаются в необходимости равенства запасов (потребностей), в матрице "План перевозок" соответствующим запасам и потребностям, указанным в матрице "Стоимость перевозок". Также все элементы матрицы "План перевозок" должны быть неотрицательными и целочисленными.

6. В диалоговом окне "Параметры поиска решения" установить параметр "Линейная модель" и число итераций, равное 100.

7. Выполнить функцию "Поиск решения" нажатием на кнопку "Выполнить". В качестве отчета по результатам выбрать необходимый пункт в списке "Тип отчета" диалогового окна «Результаты поиска решения».

После выполнения вышеуказанных действий при условии, что задача имеет решение, в матрице «План перевозок» запишется оптимальное решение задачи, т.е. оптимальный план перевозок с указанием объемов поставок в каждой ячейке. В ячейке с целевой функцией запишутся совокупные затраты поставок.

4. Решение параметрической транспортной задачи

4.1 Постановка параметрической транспортной задачи

Имеется четыре поставщика однородного груза с объемами поставок 100, 70, 70, 20 т. и три потребителя с объемами потребления 120, 80, 60 т. Стоимость транспортных расходов задана матрицей

причем стоимость перевозки груза от четвертого поставщика до третьего потребителя изменяется в диапазоне 0?k?9.

Определить оптимальный план перевозок, обеспечивающий минимальные транспортные расходы.

Изобразим матричную запись задачи (табл. 4.1.1)

Табл. 4.1.1. Матричная запись задачи

Bj

Ai

B1

B2

B3

120

80

60

A1

100

2

4

2

X11

X12

X13

A2

70

5

5

6

X21

X22

X23

A3

70

4

7

3

X31

X32

X33

A4

20

6

8

1+k

X41

X42

X43

4.2 Математическая модель задачи

Целевая функция

.

где Xij - объем поставок груза,

при ограничениях:

Xij?0,

Подробные ограничения по потребностям и запасам каждого потребителя и поставщика соответственно отражены в Таблице 4.2.1.

Табл. 4.2.1. Ограничения по потребностям и запасам

По потребностям

По запасам

B1

X11+X21+X31+X41=120

A1

X11+X12+X13=100

B2

X12+X22+X32+X42=80

A2

X21+X22+X23=70

B3

X13+X23+X33+X43=60

A3

X31+X32+X33=70

A4

X41+X42+X43=70

4.3 Решение задачи аналитическим методом

Полагая k=0, по известному алгоритму составим опорное решение методом Фогеля. Полученный опорный план перевозок и алгоритм выполнения с нахождением минимальных разностей стоимостей перевозок (Cij) в каждом столбце и строке изображен на рисунке 4.3.1.

Рис. 4.3.1. Составление первого опорного решения задачи по методу Фогеля

Процесс выполнения получения опорного решения с последовательным назначением перевозок в ячейки: А4В3 - А3В3 - А3В1 - А1В1 - А1В2 - A2B2.

Проверка плана на вырожденность: m+n-1=6. План невырожденный.

Проверим опорное решение на оптимальность по методу потенциалов. Расчет потенциалов строк и столбцов для занятых из условия vi + uj = cij для занятых клеток и проверка условия vi + uj ? cij для незанятых приведены в таблице 4.3.1.

Решение, полученное при k=0, является оптимальным для всех значений параметра k, удовлетворяющих условию .

Из условия для свободных клеток найдем:

?13 = v3 + u1 - c'13 = -1 + 2 - 2 = -1

?21 = v1 + u2 - c'21 = 0 + 3 - 5 = -2

?23 = v3 + u2 - c'23 = -1 + 3 - 6 = -4

?32 = v2 + u3 - c'32 = 2 + 4 - 7 = -1

?41 = v1 + u4 - c'41 = 0 + 2+k - 6 = -4 + k

?42 = v2 + u4 - c'42 = 2 + 2+k - 8 = -4 + k

Табл. 4.3.1. Проверка первого опорного решения на оптимальность методом потенциалов

заполненные

незаполненные

vi + uj = cij

значения

vi + uj ? cij

условие

А1В1

v1+u1=2

v1=0, u1=2

А1В3

v3+u1<=2

соблюдается

А1В2

v2+u1=4

v2=2

А2В1

v1+u2<=5

соблюдается

A2B2

v2+u2=5

u2=3

А2В3

v3+u2<=6

соблюдается

A3B1

v1+u3=4

u3=4

А3В2

v2+u3<=7

соблюдается

A3B3

v3+u3=3

v3= -1

A4B1

v1+u4<=6

соблюдается

A4B3

v3+u4=1+k

u4=2+k

A4B2

v2+u4<=8

соблюдается

Определение значений k1 и k2:

k1 = max(-aij/Bij) = т.к. все Bij ? 0

k2 = min(-aij/Bij) = (-a41/B41; -a42/B42) = min(4;4) = 4. Все Bij > 0.

Так как по условию задачи k?0, то оптимальное решение сохраняется при 0?k?4.

При этом минимальная стоимость транспортных расходов составляет:

F(X1)min = 20*(1+k) + 40*3 + 30*4 + 90*2 + 10*4 + 70*5 = 830 + 20k

Таким образом, при , F(X1)min = 830 + 20k и

.

Чтобы получить оптимальное решение при k?4 перераспределим поставки товаров в клетку (4,1), где k2=4. Вновь полученное распределение с учетом изменения стоимости перевозки в ячейке A4B3 (k=4) представлено на рисунке 4.3.2.

Рис. 4.3.2. Составление второго опорного решения задачи по методу Фогеля

Процесс выполнения получения опорного решения с последовательным назначением перевозок в ячейки: А4В1 - А3В3 - А3В1 - А1В1 - А1В2 - A2B2.

Проверка плана на вырожденность: m+n-1=6. План невырожденный.

Проверим опорное решение на оптимальность по методу потенциалов. Расчет потенциалов строк и столбцов для занятых из условия vi + uj = cij для занятых клеток и проверка условия vi + uj ? cij для незанятых приведены в таблице 4.3.2.

Табл. 4.3.2 Проверка второго опорного решения на оптимальность методом потенциалов

заполненные

незаполненные

vi + uj = cij

значения

vi + uj ? cij

условие

А1В1

v1+u1=2

v1=0, u1=2

А1В3

v3+u1<=2

соблюдается

А1В2

v2+u1=4

v2=2

А2В1

v1+u2<=5

соблюдается

A2B2

v2+u2=5

u2=3

А2В3

v3+u2<=6

соблюдается

A3B1

v1+u3=4

u3=4

А3В2

v2+u3<=7

соблюдается

A3B3

v3+u3=3

v3= -1

A4B2

v2+u4<=8

соблюдается

A4B1

v1+u4=6

u4=6

A4B3

v3+u4<=1+k

соблюдается

Решение, полученное при k=4, является оптимальным для всех значений параметра k, удовлетворяющих условию .

Из условия для свободных клеток найдем:

?13 = a3 + b1 - C'13 = -1 + 2 - 2 = -1

?21 = a1 + b2 - C'21 = 0 + 3 - 5 = -2

?23 = a3 + b2 - C'23 = -1 + 3 - 6 = -4

?32 = a2 + b3 - C'32 = 2 + 4 - 7 = -1

?42 = a2 + b4 - C'42 = 2 + 6 - 8 = 0

?43 = a3 + b4 - (C'43 + С''43) = -1 + 6 - (1+k) = 4-k

Определение значений k1 и k2

k1 = max(-aij/Bij) = -a43/B43 = 4. Все Bij < 0

k2 = min(-aij/Bij) = т.к. все Bij ? 0

Так как по условию задачи k ? 9, то оптимальное решение сохраняется при 4?k?9.

При этом минимальная стоимость транспортных расходов составит:

F(X2)min = 20*6 + 60*3 + 10*4 + 90*2 + 10*4 + 70*5 = 910

Таким образом, при F(X2)min = 910 и

.

4.4 Решение задачи средствами Ms Excel

Создадим в окне программы Ms Excel две матрицы «План перевозок» и «Стоимость перевозок», согласно вышеизложенным правилам (рис 4.4.1). Также нужно указать ячейку содержащую изменяемый параметр k. При этом в клетке A4B3 матрицы «Стоимость перевозок» устанавливаем формулу, отображающую зависимость данного тарифа от параметра k: L7=1+L9.

Рис. 4.4.1. Фрагмент окна программы Ms Excel: Матрицы «План перевозок» и «Стоимость перевозок» с изменяемым тарифом C43.

В ячейки, которые должны отображать запасы поставщиков и потребности потребителей в матрице «План перевозок» вводим формулы суммирующие значения всех возможных поставок данных поставщиков и потребителей, например: B4=СУММ(C4:E4), C3=СУММ(С4:С7).

В ячейку целевой функции (N7) введем =СУММПРОИЗВ(C4:E7;J4:L7).

Метод решения параметрической транспортной задачи средствами Ms Excel заключается в нахождении оптимального решения при каждом значении параметра k, с сохранением сценария для каждой процедуры «Поиск решения». После этого необходимо из всего диапазона изменения параметра k выделить отдельные промежутки, на которых сохраняется оптимальное решение задачи и минимальная стоимость затрат.

В диалоговом окне «Поиск решения», согласно вышеуказанным правилам установим все необходимые ограничения и ссылки на необходимые ячейки (рис. 4.4.2). Также необходимо в ограничениях указать пределы изменения параметра k, т.е. 0?k?9.

Рис. 4.4.2. Диалоговое окно «Поиск решения»

В диалоговом окне «Параметры поиска решения» установить необходимые параметры (рис. 4.4.3).

Рис. 4.4.3. Диалоговое окно «Параметры поиска решения»

После нажатия на кнопку «Выполнить» в диалоговом окне «Результаты поиска решения» (рис. 4.4.5) нажать «Сохранить сценарий…» и в появившемся диалоговом окне «Сохранение сценария» задать имя данному сценарию и нажать «ОК» (рис. 4.4.4.).

Рис. 4.4.4. Диалоговое окно «Сохранение сценария»

После сохранения сценария в диалоговом окне «Результаты поиска решения» выделить необходимые типы отчетов и нажать «OK» (рис. 4.4.5.).

Рис. 4.4.5. Диалоговое окно «Результаты поиска решений

После выполнения всех операций в матрице «План перевозок» получим оптимальный план перевозок при k=0 (рис. 4.4.6.).

Рис. 4.4.6. Фрагмент окна программы Ms Excel: Результат поиска решения при k=0.

Полученное значение целевой функции F(x1)min=830.

Теперь аналогичным способом найдем оптимальный план перевозок при k=1. Проведя повторный расчет, получим новый план перевозок и значение целевой функции (рис 4.4.7.).

Рис. 4.4.7. Фрагмент окна программы Ms Excel: Результат поиска решения при k=1

Полученное значение целевой функции F(x2)min = 850.

Как видно из рисунков 4.4.5. и 4.4.6 планы перевозок в обоих случаях (k=0, k=1) одинаковы. После дальнейших расчетов при всех остальных значениях параметра k обнаружим, что при план перевозок остается неизменным, изменяется лишь значение целевой функции. При значении параметра «Поиск решения» выдает другой план перевозок, и значение целевой функции на данном промежутке остается неизменным F(x)min = 910. Полученный план перевозок при значении k=4 изображен на рисунке 4.4.8.

Рис. 4.4.8. Фрагмент окна программы Ms Excel: Результат поиска решения при k=4

Значения целевой функции, соответствующие параметру k в каждой итерации представлены в таблице 4.4.1.

Из представленных в таблице 4.4.1 данных можно вывести определенную закономерность изменения значения целевой функции на промежутке :

F(x1)min = 830, (k=0);

F(x2)min = F(x1)min +20 = 830+20, (k=1);

F(x3)min = F(x2)min +20 = 830 + 20*2 = 870, (k=2).

Следуя по той же цепочке, найдем:

F(x4)min = 830 + 20*3, (k=3).

F(x5)min = 830 + 20*4, (k=4).

Исходя из подобной логики можно представить F(x1)min = 830 + 20*0.

Отсюда можно вывести формулу, отображающую закономерность изменения значения целевой функции при :

.

Для значений значение функции постоянно F(x)=910.

Таблица 4.4.1. Значения целевой функции в каждой итерации

номер итерации i

значение параметра ki

значение функции F(xi)min

1

0

830

2

1

850

3

2

870

4

3

890

5

4

910

6

5

910

7

6

910

8

7

910

9

8

910

10

9

910

Команда «Сервис > Сценарии» открывает диалоговое окно «Диспетчер сценариев», которое отображает сохраненные сценарии каждой итерации нахождения оптимального плана перевозок (рис 4.4.9.).

Рис. 4.4.9. Диалоговое окно «Диспетчер сценариев»

С помощью «Диспетчера сценариев» можно просмотреть план перевозок и значение целевой функции, получаемые при каждом значении параметра k. Также можно просмотреть отчет, отображающий значения изменяемых ячеек в каждой из итераций.

Заключение

Ответ.

, , F(X1)min = 830 + 20k.

, , F(X2)min = 910.

Представленная в данной курсовой работе параметрическая транспортная задача решена двумя способами: аналитическим методом Фогеля и средствами компьютерной программы Ms Excel. Оба предложенных метода дают одинаковое решение и определяют оптимальный план перевозок товара и минимальную стоимость всех перевозок для каждого из промежутков диапазона изменения параметра, определяющего тариф одной из перевозок.

Описанная в работе задача об оптимальных перевозках и методы ее решения - только отдельный пример огромного множества задач линейного программирования. Цель транспортной задачи - разработка наиболее рациональных путей и способов транспортирования товаров, устранение чрезмерно дальних, встречных, повторных перевозок. Все это сокращает время продвижения товаров, уменьшает затраты предприятий, фирм, связанные с осуществлением процессов снабжения сырьем, материалами, топливом, оборудованием и т.д.

Библиографический список

Красс М.С., Чупрынов Б.П. Основы математики и ее приложения в экономическом анализе: Учебник. - 3-е изд., исп. - М.: Дело, 2002. - 688 с.

И.Л. Акулич. Математическое программирование в примерах и задачах: учебное пособие для ВУЗов. - М.: Высшая школа, 1986 г, 319 с.

Т.Н. Павлова, О.А. Ракова. Линейное программирование. Учебное пособие. - Димитровград, 2002 г.

Т.Н. Павлова, О.А. Ракова. Решение задач линейного программирования средствами Excel. Учебное пособие. - Димитровград, 2002 г.

В.И. Ермаков. Сборник задач по высшей математике для экономистов. - М.: Издательство Инфра, 2001 г, 574 с.

Страницы: 1, 2



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.