на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Прикладна теорія цифрових автоматів
p align="center">

2.2.1. Кодування станів

Аналіз канонічного методу структурного синтезу автомата показує, що різні варіанти кодування станів автомата приводять до різних виражень функцій збудження пам'яті і функцій виходів, у результаті чого складність комбінаційної схеми істотно залежить від обраного кодування.

Мы повинні кодувати стани автомату з допомогою евристичного алгоритму кодування, тому що у мене Т-тригер.

Даний алгоритм мінімізує сумарне число переключень елементів пам'яті на всіх переходах автомата і використовується для кодування станів автомата при синтезі на базі T, RS, JK-тригерів. Для даних типів тригерів (на відміну від D-тригерів) на кожнім переході, де тригер змінює своє значення на протилежне, одна з функцій збудження обов'язково дорівнює 1. Зменшення числа переключень тригерів приводить до зменшення кількості одиниць відповідних функцій збудження, що при відсутності мінімізації однозначно приводить до спрощення комбінаційної схеми автомата.

Будую матрицю |T|, яка складається із всіх пар номерів (i, j), для яких P(i, j) ? 0, i?j. Для кожної пари вказуємо її вагу.

¦T¦ =

i ¦ j ¦ P(i,j)

1 ¦ 2 ¦ 1

1 ¦ 11 ¦ 1

1 ¦ 12 ¦ 1

1 ¦ 21 ¦ 1

2 ¦ 3 ¦ 1

3 ¦ 4 ¦ 1

3 ¦ 13 ¦ 1

3 ¦ 15 ¦ 1

4 ¦ 5 ¦ 1

5 ¦ 6 ¦ 1

5 ¦ 7 ¦ 1

5 ¦ 13 ¦ 1

5 ¦ 18 ¦ 1

6 ¦ 7 ¦ 1

7 ¦ 8 ¦ 1

7 ¦ 17 ¦ 1

8 ¦ 9 ¦ 1

9 ¦ 10 ¦ 1

9 ¦ 14 ¦ 1

9 ¦ 19 ¦ 1

10 ¦ 11 ¦ 1

11 ¦ 12 ¦ 1

11 ¦ 14 ¦ 1

11 ¦ 22 ¦ 1

13 ¦ 15 ¦ 1

13 ¦ 17 ¦ 1

14 ¦ 19 ¦ 1

14 ¦ 21 ¦ 1

15 ¦ 16 ¦ 1

15 ¦ 17 ¦ 1

15 ¦ 18 ¦ 1

16 ¦ 17 ¦ 1

17 ¦ 18 ¦ 2

19 ¦ 20 ¦ 1

19 ¦ 21 ¦ 1

19 ¦ 22 ¦ 1

20 ¦ 21 ¦ 1

21 ¦ 22 ¦ 2

Підраховуємо вагу всіх компонентів всіх пар

P(1) = 4

P(2) = 2

P(3) = 4

P(4) = 2

P(5) = 5

P(6) = 2

P(7) = 4

P(8) = 2

P(9) = 4

P(10) = 2

P(11) = 5

P(12) = 2

P(13) = 4

P(14) = 4

P(15) = 5

P(16) = 2

P(17) = 5

P(18) = 3

P(19) = 5

P(20) = 2

P(21) = 5

P(22) = 3

Далі згідно правил алгоритму будуємо матрицю М

i ¦ j ¦ P(i,j)

17 ¦ 18 ¦ 2

15 ¦ 17 ¦ 1

3 ¦ 15 ¦ 1

7 ¦ 17 ¦ 1

5 ¦ 7 ¦ 1

5 ¦ 13 ¦ 1

13 ¦ 15 ¦ 1

13 ¦ 17 ¦ 1

3 ¦ 13 ¦ 1

5 ¦ 18 ¦ 1

15 ¦ 18 ¦ 1

4 ¦ 5 ¦ 1

5 ¦ 6 ¦ 1

15 ¦ 16 ¦ 1

16 ¦ 17 ¦ 1

2 ¦ 3 ¦ 1

1 ¦ 2 ¦ 1

1 ¦ 11 ¦ 1

1 ¦ 21 ¦ 1

21 ¦ 22 ¦ 2

19 ¦ 21 ¦ 1

9 ¦ 19 ¦ 1

11 ¦ 14 ¦ 1

14 ¦ 19 ¦ 1

14 ¦ 21 ¦ 1

9 ¦ 14 ¦ 1

11 ¦ 22 ¦ 1

19 ¦ 22 ¦ 1

10 ¦ 11 ¦ 1

11 ¦ 12 ¦ 1

19 ¦ 20 ¦ 1

20 ¦ 21 ¦ 1

1 ¦ 12 ¦ 1

3 ¦ 4 ¦ 1

6 ¦ 7 ¦ 1

7 ¦ 8 ¦ 1

8 ¦ 9 ¦ 1

9 ¦ 10 ¦ 1

Визначемо розрядність кода для кодування станів автомата

R = ] log2 N [ = ] log2 22 [ = 5

Результати кодування:

b1 01011

b2 01111

b3 00111

b4 01101

b5 00101

b6 01100

b7 00100

b8 10100

b9 10000

b10 11000

b11 11010

b12 01010

b13 00110

b14 11001

b15 00011

b16 00010

b17 00000

b18 00001

b19 10001

b20 10101

b21 10011

b22 10010

Підрахунок ефективності кодування:

Кількість перемикань тригерів:

W = E P(i,j)*d(i,j) = P(1,2)*d(1,2) + P(1,11)*d(1,11) + P(1,12)*d(1,12) + P(1,21)*d(1,21) + P(2,3)*d(2,3) + P(3,4)*d(3,4) + P(3,13)*d(3,13) + P(3,15)*d(3,15) + P(4,5)*d(4,5) + P(5,6)*d(5,6) + P(5,7)*d(5,7) + P(5,13)*d(5,13) + P(5,18)*d(5,18) + P(6,7)*d(6,7) + P(7,8)*d(7,8) + P(7,17)*d(7,17) + P(8,9)*d(8,9) + P(9,10)*d(9,10) + P(9,14)*d(9,14) + P(9,19)*d(9,19) + P(10,11)*d(10,11) + P(11,12)*d(11,12) + P(11,14)*d(11,14) + P(11,22)*d(11,22) + P(13,15)*d(13,15) + P(13,17)*d(13,17) + P(14,19)*d(14,19) + P(14,21)*d(14,21) + P(15,16)*d(15,16) + P(15,17)*d(15,17) + P(15,18)*d(15,18) + P(16,17)*d(16,17) + P(17,18)*d(17,18) + P(19,20)*d(19,20) +

P(19,21)*d(19,21) + P(19,22)*d(19,22) + P(20,21)*d(20,21) + P(21,22)*d(21,22) =

1*1 + 1*1 + 1*2 + 1*1 + 1*1 + 1*1 + 1*2 + 1*1 + 1*1 + 1*2 + 1*1 + 1*2 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*2 + 1*1 + 1*1 + 1*1 + 1*2 + 1*1 + 1*1 + 1*2 + 1*1 + 1*2 + 1*2 + 1*1 + 1*2 + 1*1 + 2*1 + 1*2 + 1*1 + 1*2 + 1*1 + 2*1 = 52

Мінімально можлива кількість перемикань тригерів

Wmin = E P(i,j) = 40

Коефіціент ефективності кодування: 1.30

Табл.3. Таблиця переходів Т-тригера

Am

Kam

As

Kas

X

Y

ФЗ

b1

01011

b2

01111

1

Y2Y4

T3

b2

01111

b3

00111

1

Y7

T2

b3

00111

b4

b13

01101

00110

NX1

X1

Y1Y9

Y8

T2 T4

T5

b4

01101

b5

00101

1

Y1Y8

T2

b5

00101

b6

b7

b18

01100

00100

00001

X4

NX4NX3

NX4X3

Y4

Y3Y10

Y6

T2 T5

T5

T3

b6

01100

b7

00100

1

Y4Y5

T2

b7

00100

b8

10100

1

Y2Y4

T1

b8

10100

b9

10000

1

Y7

T3

b9

10000

b10

b14

11000

11001

NX1

X1

Y1Y9

Y8

T2

T2 T5

b10

11000

b11

11010

1

Y1Y8

T4

b11

11010

b12

b1

b22

01010

01011

10010

X4

NX4NX3

NX4X3

Y4

Y3Y10

Y6

T1

T1 T5

T2

b12

01010

b1

01011

1

Y4Y5

T5

b13

00110

b5

b17

00101

00000

X2

NX2

Y1Y8

Y5Y9

T4T5

T3 T4

b14

11001

b11

b21

11010

10011

X2

NX2

Y3Y10

Y6

T4T5

T2 T4

b15

00011

b3

b13

b16

00111

00110

00010

X5

NX5NX6

NX5X6

Y7

Y8

Y3

T3

T3 T5

T5

b16

00010

b17

00000

1

Y5Y9

T4

b17

00000

b7

b18

b18

b15

00100

00001

00001

00011

X4NX3

X4X3

NX4X1

NX4NX1

Y3Y10

Y6

Y6

Y3Y6

T3

T5

T5

T4T5

2.2.2. Функції збудження тригерів та вихідних сигналів

Введемо слідуючі позначення:

A=b3NX1 П=b21Х4NX3

Б=b5X4 Р= b5NX4Х3

H=b9X1 С=В15Х5

Г=b11X4 Т= b17Х4NX3

Д=b13X2 У= b19NX5X6

Е=b13NX2 Ф= b21NX4NX1

Ж=b14X2 Х= b3Х1

З=b14NX2 Ц= b5NX4NX3

И=b15NX5NX6 Ч= b11NX4NX3

К=b17NX4NX1 Ш= b15NX5X6

Л=b9NX1 Щ= b17X4X3

М=b11NX4X3 Э= b17NX4X1

O= b19NX5NX6 Ю= b21X4X3

Я= b21NX4X1 В=В19Х5

Виписуємо з таблиці вирази для тригерів:

T1=b7+Г+Ч+П

Т2=b2+А+b4+Б+b6+Л+Н+М+З+О+П

Т3=b1+Р+b8+Е+С+И+Т+У+b20

Т4 =А+b10+Д+Е+Ж+З+b16+К+b18+b20+Ф+b22

Т5=Х+Б+Ц+H+Ч+b12+Д+Ж+И+Ш+Щ+Э+K+Ю+Я+b22

Формуємо функції виходів автомата:

Y1=А+b4+Л+b10+Д

Y2=b1+b7

Y3=Ц+Ч+Ж+Ш+Т+К+b18+У+П+Ф+b22

Y4=b1+Б+b6+b7+Г+b12

Y5=b6+b12+Е+b16+b20

Y6=М+З+Щ+Э+К+b18+Ю+Я+Ф+b22

Y7=b2+b8+С+В

Y8=Х+b4+Н+b10+Д+И+О

Y9=А+Л+Е+b16+b20

Y10=Ц+Ч+Ж+Т+П

2.2.3. Переведеня у базис:

T1=b7+Г+Ч+П= Nb7•NГ•NЧ•NП

Т2=b2+А+b4+Б+b6+Л+Н+М+З+О+П=

=Nb2•NА•Nb4•NБ•Nb6•NЛ•NН•NМ+NЗ•NО•NП

Т3=b1+Р+b8+Е+С+И+Т+У+b20=

=Nb1•NР•Nb8•NЕ•NС•NИ•NТ•NУ+b20

Т4 =А+b10+Д+Е+Ж+З+b16+К+b18+b20+Ф+b22=

=NА•Nb10•NД•NЕ•NЖ•NЗ•Nb16•NК+Nb18•Nb20•NФ•Nb22

Т5=Х+Б+Ц+H+Ч+b12+Д+Ж+И+Ш+Щ+Э+K+Ю+Я+b22=

=NХ•NБ•NЦ•NH•NЧ•Nb12•NД•NЖ+NИ•NШ•NЩ•NЭ•NK•NЮ•NЯ•Nb22

Y1=А+b4+Л+b10+Д= NА•Nb4•NЛ•Nb10•NД

Y2=b1+b7= Nb1•Nb7

Y3=Ц+Ч+Ж+Ш+Т+К+b18+У+П+Ф+b22=NЦ•NЧ•NЖ•NШ•NТ•NК•Nb18•NУ+

+NП•NФ•Nb22

Y4=b1+Б+b6+b7+Г+b12=Nb1•NБ•Nb6•Nb7•NГ•Nb12

Y5=b6+b12+Е+b16+b20= Nb6•Nb12•NЕ•Nb16•Nb20

Y6=М+З+Щ+Э+К+b18+Ю+Я+Ф+b22= NМ•NЗ•NЩ•NЭ•NК•Nb18•NЮ•NЯ+

+NФ•Nb22

Y7=b2+b8+С+В= Nb2•Nb8•NС•NВ

Y8=Х+b4+Н+b10+Д+И+О= NХ•Nb4•NН•Nb10•NД•NИ•NО

Y9=А+Л+Е+b16+b20= NА•NЛ•NЕ•Nb16•Nb20

Y10=Ц+Ч+Ж+Т+П= NЦ•NЧ•NЖ•NТ•NП

Ми отримали усі необхідні вирази для принципової схеми. Будуємо її, користуючись формулами для тригерів та вихідними станами.

Висновок

В ході проекту ми отримали комбінаційну схему булевої функції в заданому базисі та побудували принципову схему керуючого автомата Мура.

Синтез автомата був виконаний з урахуванням серії КР 555, тому може бути зроблений та опробований в реальному житті. В цілому курсова робота довела свою важливість у закріпленні отриманих знань та набутті низки звичок щодо проектування цифрових автоматів.

Перелік використаної літератури

1. Методичні вказівки до курсової роботи по дисципліні “Прикладна теорія ци фрових автоматів”. Одеса. ОГПУ. 1998р.

2. Мікросхеми серії 1533(555). Стислі теоретичні дані. Одеса. Центр НТТМ ОГПУ. 1975г.

3. ГОСТ 2.708-81 ЄСКД. Правила виконання електричних схем цифрової обчи слювальної техніки.

ГОСТ 2.743-82. ЄСКД. Умовні графічні позначення в схемах. Елементи цифрової техніки.

Страницы: 1, 2



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.