на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Применение симплекс-метода при определении состава смеси при переработке нефти

Применение симплекс-метода при определении состава смеси при переработке нефти

Федеральное агентство по образованию

ГОУ ВПО «УГТУ-УПИ»

Кафедра АСУ

Курсовой проект

по теории принятия решений

Тема: Определение состава смеси при переработке нефти

Вариант № 14

Екатеринбург 2009г.

Постановка задачи

Нефтеперерабатывающая компания производит 2 сорта бензина, который она продаёт по цене 19 и 21,5 цент за галлон. Нефтеперегонный завод может закупать 4 различных сорта сырой нефти, имеющей состав и стоимость, указанные в таблице 1.

Таблица 1

Состав компонент и стоимость сырой нефти

Сырая нефть

Состав компонент

Цена галлона нефти

A

B

C

1

0,75

0,2

0,05

15

2

0,3

0,35

0,35

9

3

0,65

0,15

0,2

16

4

0,45

0,35

0,2

13

В бензине стоимостью 21,5 цент должно содержаться не менее 45% фракции A и не более 20% фракции С. В бензине стоимостью 19 центов должно быть не более 30% фракции С. При смешивании вследствие испарения теряется 2% фракции А и по 1% фракций B и С. Определить наиболее выгодное соотношение сортов сырой нефти, используемой для производства бензина, и выбрать наиболее прибыльный бензин.

Введение

До XIX века основным поставщиком прикладных задач для математики были астрономия, механика, физика, а основной и весьма плодотворной идеей -- идея непрерывности, приведшая к становлению мощного аппарата интегрально-дифференциального исчисления. Развитие экономики привело к возможности рассмотрения количественных закономерностей и в рамках этой науки; с появлением экономических моделей Кенэ (1758 г.), Маркса, Вальраса и др. по существу началась математическая экономика.

В 1939 году вышла в свет монография Л.В. Канторовича «Математические методы организации и планирования производства», где выявлен широкий класс производственно-экономических оптимизационных задач, допускающих строгое математическое описание. Идеи, содержащиеся в этой книге, были затем им развиты и привели к созданию линейного программирования.

Для ряда моделей основное содержание задачи заключается в нахождении смеси веществ, продуктов и тому подобного, удовлетворяющих определенным технологическим требованиям.

Прародительницей этих задач была так называемая задача о диете: найти наиболее дешевую смесь пищевых продуктов 1,2,…,m (хлеба, мяса, молока и пр.) которая удовлетворяла бы определенным биологическим ограничениям на содержание жиров, белков, углеводов, микроэлементов, витаминов и тому подобных биологически активных веществ.

Если обозначить через xi процентное содержание (по весу) j-го продукта в смеси, через aij - весовое содержание i-го вещества в j-ом продукте, pi - допустимую верхнюю границу содержания i-го вещества в смеси, qi - нижнюю, а через cj - стоимость j-го продукта, то задача о наиболее дешевой диете приобретает вид:

Для этой задачи характерно наличие двусторонних ограничений (1.2) на значение определенных линейных комбинаций переменных. Эта особенность весьма часто встречается в практике линейного программирования и специальным образом учитывается как в алгоритмах, так и в формах представления данных.

Приведенная интерпретация задачи имеет скорее учебно педагогическое, чем реально-практическое значение. В действительности в качестве продуктов (хлеба, ...) могут выступать, например, различные виды нефти, полученные с разных месторождений. Эти виды отличаются по составу: они содержат различные концентрации примесей серы, парафинов, воды и прочих веществ, существенно влияющих на процесс термического разложения нефти на бензины, керосин и другие нефтепродукты.

Для наилучшей эффективности и безопасности технологического процесса концентрации вышеупомянутых примесей должны находиться в определенных пределах, что достигается смешиванием различных видов сырой нефти. Учитывая то, что стоимости различных видов нефти существенно отличаются, задача подбора наиболее дешевой смеси, укладывающейся в технологические допуски, может дать существенный экономический эффект, преумноженный многомиллионными объемами переработки.

Аналогичные проблемы возникают, например, и при производстве металлургического кокса из углей различных месторождений, разработке рациона питания скота и пр. В более реалистичных постановках возникают также и так называемые производственно-транспортные задачи, когда в расходах учитывают и транспортные затраты.

Математическая постановка задачи

Для получения r сортов бензина используется n исходных материалов. Химический состав каждого сорта бензина определяется содержанием в нем m химических элементов.

Таким образом, получается:

r - количество получаемых сортов бензина; r = 2.

m - количество химических элементов; m = 3.

n - количество сортов сырой нефти; n = 4.

k - сорт бензина; .

i - вид фракции; (A, B и C).

j - сорт нефти; .

ai,j - содержание i-го химического элемента (компонента) в единице j-го сорта сырой нефти

bi,k - содержание i-го химического элемента (компонента) в бензине k-го сорта

xj,k - доля содержания j-го сорта сырой нефти, используемое в одном галлоне смеси бензина k-го сорта;

Sk - отпускная цена бензина k -го сорта;

Zj - цена единицы j-го сорта сырой нефти; Z

Ck - прибыль получаемая при производстве бензина k -го сорта;

Исходя из условий задачи, необходимо максимизировать следующую целевую функцию (максимизируется разность между отпускной ценой выпускаемых бензинов и ценой исходных материалов):

Для решения задачи необходимо максимизировать целевую функцию с учётом ограничений. В общем виде мы имеем следующее ограничение, определяющее содержание фракций в готовом бензине:

В частом случае, это ограничение имеет следующий вид (в поставленной задаче содержатся ограничения вида «не более» и «не менее», что приводит к использованию неравенств):

Так же нужно учесть формулу баланса:

Где , т.е. не отрицательны.

Выбор метода решения задачи

Процессы принятия решений лежат в основе любой целенаправленной деятельности. Оптимальные (эффективные) решения позволяют достигать цели при минимальных затратах трудовых, материальных и сырьевых ресурсов.

В классической математике методы поиска оптимальных решений рассматривают в разделах классической математики, связанных с изучением экстремумов функций, в математическом программировании. Наличие ограничений делает задачи математического программирования принципиально отличными от классических задач математического анализа по отысканию экстремальных значений функции. Методы математического анализа для поиска экстремума функции в задачах математического программирования оказываются непригодными.

Для решения задач математического программирования разработаны и разрабатываются специальные методы и теории. Так как при решении этих задач приходится выполнять значительный объем вычислений, то при сравнительной оценке методов большое значение придается эффективности и удобству их реализации на ЭВМ.

Если целевая функция и функции ограничений - линейные функции, то соответствующая задача поиска экстремума является задачей линейного программирования.

Наиболее известным и широко применяемым на практике для решения общей задачи линейного программирования является симплекс-метод. Cимплекс-метод является достаточно эффективным алгоритмом, показавшим хорошие результаты при решении прикладных задач линейного программирования

Для решения задачи симплекс-методом необходимо привести её к каноническому виду, то есть ограничения принимают вид равенств, а целевая функция максимизируется. Так как общая задача линейного программирования имеет ограничения не только вида «=», но и « », « », а целевая функция может либо максимизироваться, либо минимизироваться, то задачу необходимо свести к определению максимума целевой функции, а все имеющиеся ограничения привести к ограничениям-равенствам.

Для того, чтобы задача линейного программирования была разрешима, то есть имела оптимальное решение, необходимо и достаточно, чтобы ограничения задачи были совместными (множество допустимых решений не пусто) и целевая функция была ограничена при поиске максимума сверху, а при поиске минимума снизу.

Описание алгоритма решения задачи

Алгоритм симплекс-метода выполняется в три этапа показан в таблице 2:

Таблица 2. Алгоритм симплекс-метода

1 этап

Приводим задачу линейного программирования к канонической форме.

2 этап

Определяем допустимое базисное решение

3 этап

Поиск оптимального решения, реализуемый переходом от одного базисного плана к другому, приводящему либо к оптимальному решению, либо к выводу о том , что задача решения не имеет

1. Необходимо задачу привести к канонической форме.

1.1. Введением неотрицательных слабых переменных все ограничения неравенства представляют в виде равенств

()

1.2. Максимизируем целевую функцию ().

1.3. Задача в канонической форме имеет вид:

Левая часть каждого ограничения данной задачи меньше либо равна правой. Для того чтобы левая часть ограничения была равна правой, необходимо к левой части каждого ограничения прибавить соответственно неотрицательные переменные , ,….,. Эти переменные вводятся в целевую функцию с нулевыми коэффициентами, чтобы не изменить её значение.

2. Поиск опорного базисного решения.

2.1. Определяем допустимое базисное решение.

2.2. Принимаем в качестве базисных, введённые слабые переменные.

2.3. Составляем исходную симплекс-таблицу (таблица 3) по следующей схеме (таблица 4):

Таблица 3. Симплекс-таблица

Ci

C1

Cj

Cn

Cn+1

Cn+m

C1

0

Ci

0

0

Cm

0

Таблица 4. Схема заполнения симплекс-таблица

Столбец Сi

записываются коэффициенты при базисных переменных ()

Столбец

базисные переменные. Количество базисных переменных равно количеству ограничений задачи (n)

Столбец

свободные члены ограничений (значения базисных переменных)

Строка

строка переменных, входящих в целевую функцию и в систему ограничений

Столбцы

В симплекс-таблице количество столбцов равно количеству базисных и свободных переменных задачи (m+n). Количество свободных переменных равно количеству неизвестных переменных задачи (n), количество базисных - количеству ограничений (m)

Строка

Для столбца : содержит значение целевой функции, которое рассчитывается по формуле , а столбцы этой же строки (значения относительных оценок ), рассчитывается по формуле

Страницы: 1, 2, 3, 4



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.