на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Программа для анализа параметров и характеристик реализации случайного процесса
p align="left">1.4.1 Непараметрические методы расчета

При использовании непараметрических методов расчета спектра случайного процесса используется только информация, заключенная в отсчетах сигнала, без каких-либо дополнительных предположений. Мы кратко рассмотрим два таких метода -- периодограмму и метод Уэлча (Welch).

Периодограмма

Этим термином -- периодограмма (periodogram) -- называется оценка спектральной плотности мощности, полученная по N отсче-там одной реализации случайного процесса согласно определению (1) (есте-ственно, не путем взятия предела, а усреднением конечного числа слагаемых). Таким образом, периодограмма рассчитывается по следующей формуле:

Деление на частоту дискретизации необходимо для получения оценки спек-тральной плотности мощности аналогового случайного процесса, восстановлен-ного по отсчетам x(k).

Если при расчете спектра используется весовая функция (окно) с коэффициен-тами w(k), формула (2) слегка модифицируется -- вместо числа отсчетов N b знаменателе должна стоять сумма квадратов модулей коэффициентов окна. По-лученная оценка спектра мощности называется модифицированной периодограм-мой (modified periodogram):

Периодограмма не является состоятельной оценкой спек-тральной плотности мощности, поскольку дисперсия такой оценки сравнима с квадратом ее математического ожидания. С ростом числа используемых отсче-тов значения периодограммы начинают все быстрее флуктуировать.

Метод Уэлча.

При вычислении периодограммы по длинному фрагменту случайного сигнала она оказывается весьма изрезанной. Для умень-шения этой изрезанности необходимо применить какое-либо усреднение. Даньелл (Daniell) предложил сглаживать быстрые флуктуации выборочного спектра путем усреднения по соседним частотам спектра. Данный метод, называемый периодограммой Даньелла, сводится к вычислению свертки периодограммы со сглаживающей функцией. В методе Бартлетта (Bartlett) анализируемый сигнал делится на неперекрывающиеся сегменты, для каждого сегмента вычисляется периодограмма и затем эти периодограммы усредняются. Если корреляционная функция сигнала на длительности сегмента затухает до пренебрежимо малых значений, то периодограммы отдельных сегментов можно считать независимы-ми. В этом случае дисперсия периодограммы Бартлетта обратно пропорциональ-на числу используемых сегментов, однако с ростом числа сегментов при фик-сированном общем числе отсчетов сигнала падает спектральное разрешение (за счет того, что сегменты становятся короче).

Уэлч (Welch) внес в метод Бартлетта два усовершенствования: использование весовой функции и разбиение сигнала на перекрывающиеся фрагменты. Приме-нение весовой функции позволяет ослабить растекание спектра и уменьшить смещение получаемой оценки спектра плотности мощности ценой незначитель-ного ухудшения разрешающей способности. Перекрытие сегментов введено для того, чтобы увеличить их число и уменьшить дисперсию оценки.

Итак, вычисления при использовании метода Уэлча (он называется еще методом усреднения модифицированных периодограмм -- averaged modified periodogram method) организуются следующим образом:

1. Вектор отсчетов сигнала делится на перекрывающиеся сегменты. Как прави-ло, на практике используется перекрытие на 50 %. Строго говоря, оптималь-ная степень перекрытия зависит от используемой весовой функции.

2. Каждый сегмент умножается на используемую весовую функцию.

3. Для взвешенных сегментов вычисляются модифицированные периодограммы.

4. Периодограммы всех сегментов усредняются.

Так же как и для периодограммы Бартлетта, дисперсия оценки, получаемой мето-дом Уэлча, уменьшается примерно пропорционально числу сегментов. Благода-ря перекрытию в методе Уэлча используется больше сегментов, поэтому диспер-сия оценки спектра плотности мощности оказывается меньше, чем для метода Бартлетта.

1.4.2 Весовые функции (окна)

Для уменьшения растекания спектра при ДПФ применяются весовые функции (weighting functions), которые также называют окнами (windows). В этом случае перед расчетом ДПФ сигнал умножается на весовую функцию w(k), которая должна спадать к краям сегмента. Формула прямого ДПФ при использова-нии весовых функций принимает следующий вид:

Роль весовой функции в этой формуле можно рассматривать с различных точек зрения. Сначала проанализируем ситуацию во временной области. Если мы ис-пользуем весовую функцию, которая имеет максимум в середине (при k = N/2) и плавно спадает к краям (k = 0 и k = N-1), то это приведет к ослаблению эффектов, связанных с возникновением скачков сигнала при периодическом повторе-нии анализируемой конечной последовательности, и, таким образом, к уменьше-нию растекания спектра.

Аналогичный вывод можно сделать, рассмотрев влияние весовой функции в час-тотной области. Умножение сигнала на весовую функцию соответствует свертке спектров сигнала и весовой функции. Это приводит к тому, что пики, содержащиеся в спектре сиг-нала, несколько расширяются. Однако при этом становится возможно умень-шить уровень боковых лепестков спектральной функции, что и является целью применения весовых функций.

Если трактовать ДПФ как фильтрацию, при использовании весовой функции w(k) получаются частотные характеристики фильтров следующего вида:

Выбирая весовую функцию w(k) определенным образом, можно уменьшить уро-вень боковых лепестков частотой характеристики фильтров, соответствующих отдельным каналам ДПФ. Естественно, платой за это является расширение цен-трального лепестка частотной характеристики.

Текст программы.

-----------------------------------

kurs.m

-----------------------------------

load EEG1.txt %загрузка исходного файла

k=input('Введите номер канала k='); %выбор каналов

l=input('Введите номер канала l=');

m=input('Введите номер канала m=');

x(:,1)=EEG1(:,k); %запись выбранных каналов

x(:,2)=EEG1(:,l); %в отдельную матрицу

x(:,3)=EEG1(:,m);

clc;

st %переход в меню

-----------------------------------

st.m

-----------------------------------

%меню выбора задания

function st

disp('Выберите задание')

disp('<a href="matlab:z1(x)">Задание 1. Оценка статистических характеристик реализации случайного процесса</a>')

disp('<a href="matlab:z2(x)">Задание 2. Оценка плотности распределения реализации случайного процесса</a>')

disp('<a href="matlab:z3(x)">Задание 3. Оценка корреляционных характеристик реализации случайного процесса</a>')

disp('<a href="matlab:z4(x)">Задание 4. Оценка спектральных характеристик реализации случайного процесса</a>')

-----------------------------------

z1.m

-----------------------------------

%Функция расчета математического ожидания и дисперсии

%для выбранных компонент реализации СП

function z1(x)

format short g

%Следующий цикл формирует 4 массива:

%mx - c мат.ожиданием

%varx - c дисперсией

%sostmx - вариативность мат. ожидания

%sostvarx - вариативность дисперсии

%1 столбец массива - временные интервалы

%2,3,4 столбцы соответствуют разным каналам

for ii=1:3

dlit=64;

for jj=1:4

for kk=1:4

a=(kk-1)*dlit+1;

b=kk*dlit;

tmpmx(kk)=mean(x(a:b,ii))

tmpvarx(kk)=var(x(a:b,ii))

end;

mx(jj,1)=dlit;

mx(jj,ii+1)=mean(tmpmx);

varx(jj,1)=dlit;

varx(jj,ii+1)=mean(tmpvarx);

sostmx(jj,1)=dlit;

sostmx(jj,ii+1)=var(tmpmx);

sostvarx(jj,1)=dlit;

sostvarx(jj,ii+1)=var(tmpvarx);

dlit=dlit*2;

end;

end

%Вывод данных

disp('-----------------------------------------------------');

disp(' | N канала ');

disp(' Длит. ------------------------------------')

disp(' интервала | 1 | 2 | 3 ');

disp('-----------------------------------------------------');

disp('Математическое ожидание');

disp(mx);

disp('Дисперсия');

disp(varx);

disp('Дисперсия оценки математического ожидания');

disp(sostmx);

disp('Дисперсия оценки дисперсии');

disp(sostvarx);

grafik=input('Хотите построить графики дисперсии оценок? (1 - Да, 2 - Нет) ');

if grafik == 1

figure;

subplot(2,1,1);

plot(sostmx(:,2:4));

title('Графики дисперсии оценки математического ожидания для разных временных интервалов','FontName','Times New Roman');

k=legend('Канал 1','Канал 2','Канал 3');

set(k,'FontName','Times New Roman');

subplot(2,1,2);

plot(sostvarx(:,2:4));

title('Графики дисперсии оценки дисперсии для разных временных интервалов','FontName','Times New Roman');

k=legend('Канал 1','Канал 2','Канал 3');

set(k,'FontName','Times New Roman');

end;

st

-----------------------------------

z2.m

-----------------------------------

%Функция построения гистограмм для заданных компонент

function z2(x)

disp('Введите количество интервалов (не менее 5)');

disp('0 - автоматический выбор');

nbins=input('Количество интервалов = ');

figure;

for ii=1:3

subplot(3,1,ii);

if nbins<5

hist(x(:,ii));

else

hist(x(:,ii),nbins);

end;

title(['Гистограмма',num2str(ii),'-го канала'],'FontName','Times New Roman');

end

st

-----------------------------------

z3.m

-----------------------------------

%Функция оценки корреляционных характеристик

function z3(x)

N=50; %размер корреляционной матрицы

[temp1, R1]=corrmtx(x(:,1) ,N); %Расчет АКФ (корреляционных

[temp2, R2]=corrmtx(x(:,2) ,N); %матриц)

[temp3, R3]=corrmtx(x(:,3) ,N);

k=0:N;

subplot(3,1,1);

stem(k, R1(1,:));

title('АКФ 1-го канала','FontName','Times New Roman');

subplot(3,1,2);

stem(k, R2(1,:));

title('АКФ 2-го канала','FontName','Times New Roman');

subplot(3,1,3);

stem(k, R3(1,:));

title('АКФ 3-го канала','FontName','Times New Roman');

R4 = xcorr(x(:,1),x(:,2)); %Расчет ВКФ

R5 = xcorr(x(:,1),x(:,3));

R6 = xcorr(x(:,2),x(:,3));

figure;

subplot(3,1,1);

stem(R4(2048:2098));

title('ВКФ 1-го и 2-го каналов','FontName','Times New Roman');

subplot(3,1,2);

stem(R5(2048:2098));

title('ВКФ 1-го и 3-го каналов','FontName','Times New Roman');

subplot(3,1,3);

stem(R6(2048:2098));

title('ВКФ 2-го и 3-го каналов','FontName','Times New Roman');

st

-----------------------------------

z4.m

-----------------------------------

%Функция расчета СПМ методом Уэлча

function z4(x)

nxt=1;

ur=input('Введите уровень боковых лепестков =');

dlit=input('Введите длительность сигнала =');

while nxt>0

long=input('Введите длину окна n=');

w=chebwin(long,ur); %окно Чебышева

figure;

plot(w);

figure;

for ii=1:3

subplot(3,2,(2*ii-1))

pwelch(x(1:dlit,ii),boxcar(dlit),[],[],100); %СПМ без выделяющей функции

title(['СПМ ',num2str(ii),' канала без выделяющей функции'],'FontName','Times New Roman');

subplot(3,2,2*ii)

pwelch(x(1:dlit,ii),w,[],[],100); %Сглажено с помощью окна Чебышева

title(['СПМ ',num2str(ii),' канала с использованием окна Чебышева'],'FontName','Times New Roman');

end;

nxt=input('Изменить длину окна и продолжить расчет? (1-Да, 0-Нет) ');

end;

st

Результаты выполнения программы

Оценка статистических характеристик реализации случайного процесса

С увеличением размера выборки вариативность оценок уменьшается. Следовательно, оценка состоятельная.

Оценка плотности распределения реализации случайного процесса.

Оценка производится методом гистограмм. Рассмотрим гистограммы при количестве интервалов n =15.

Сигнал имеет распределение, близкое к Гауссовому в диапазоне примерно -500..500. Математическое ожидание стремится к нулю. Такое распределение характерно для помех в каналах связи.

Оценка корреляционных характеристик реализации случайного процесса

Отсчеты сигнала коррелированны слабо.

Оценка спектральных характеристик реализации случайного процесса

Длина окна n=32

Длина окна n=64

При использовании непараметрических методов оценка СПМ получается смещенной и несостоятельной. Но такие методы легко реализовать. А для уменьшения несостоятельности оценки применяют сглаживание (усреднение нескольких оценок). В результате дисперсия оценки СПМ уменьшается. Чем меньше, тем больше число сегментов, на которые разбивается сигнал, и тем больше сглаживание.

Список литературы

1. Дженкинс Г., Ваттс Д. Спектральный анализ и его приложения. Т. 1. М.: Мир, 1971. 316 с.

2. Марпл-мл. С.Л. Цифровой спектральный анализ и его приложения. М.: Мир, 1990. 584 с.

3. Сергиенко А.Б. Цифровая обработка сигналов. СПб.: Питер, 2002.

4. Шелухин О.И., Лукьянцев Н.Ф. Цифровая обработка и передача речи. М.: Радио и связь, 2000.

Страницы: 1, 2



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.