на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Протокол обмена управляющими сообщениями ICMP. Протоколы обмена маршрутной информацией
ля того, чтобы понять, в каком состоянии находятся линии связи, подключенные к его портам, маршрутизатор периодически обменивается короткими пакетами со своими ближайшими соседями. Этот трафик также широковещательный, но он циркулирует только между соседями и поэтому не так засоряет сеть.

Протоколом, основанным на алгоритме состояния связей, в стеке TCP/IP является протокол OSPF.

Дистанционно-векторный протокол RIP

Протокол RIP (Routing Information Protocol)
маршрутизации предназначен для сравнительно небольших и относительно однородных сетей (алгоритм Белмана-Форда). Протокол разработан в университете Калифорнии (Беркли), базируется на разработках фирмы Ксерокс и реализует те же принципы, что и программа маршрутизации routed, используемая в ОC UNIX (4BSD). Маршрут здесь характеризуется вектором расстояния до места назначения. Предполагается, что каждый маршрутизатор является отправной точкой нескольких маршрутов до сетей, с которыми он связан.

Протокол RIP представляет собой один из старейших протоколов обмена маршрутной информацией, однако он до сих пор чрезвычайно распространен в вычислительных сетях. Помимо версии RIP для сетей TCP/IP, существует также версия RIP для сетей IPX/SPX компании Novell.

В этом протоколе все сети имеют номера (способ образования номера зависит от используемого в сети протокола сетевого уровня), а все маршрутизаторы - идентификаторы. Протокол RIP широко использует понятие «вектор расстояний». Вектор расстояний представляет собой набор пар чисел, являющихся номерами сетей и расстояниями до них в хопах.

Описания этих маршрутов хранится в специальной таблице, называемой маршрутной. Таблица маршрутизации RIP содержит по записи на каждую обслуживаемую машину (на каждый маршрут). Запись должна включать в себя:

· IP-адрес места назначения.

· Метрика маршрута (от 1 до 15; число шагов до места назначения).

· IP-адрес ближайшего маршрутизатора (gateway) по пути к месту назначения.

· Таймеры маршрута.

Первым двум полям записи мы обязаны появлению термина вектор расстояния (место назначение - направление; метрика - модуль вектора). Периодически (раз в 30 сек) каждый маршрутизатор посылает широковещательно копию своей маршрутной таблицы всем соседям-маршрутизаторам, с которыми связан непосредственно. Маршрутизатор-получатель просматривает таблицу. Если в таблице присутствует новый путь или сообщение о более коротком маршруте, или произошли изменения длин пути, эти изменения фиксируются получателем в своей маршрутной таблице. Протокол RIP должен быть способен обрабатывать три типа ошибок:

Циклические маршруты. Так как в протоколе нет механизмов выявления замкнутых маршрутов, необходимо либо слепо верить партнерам, либо принимать меры для блокировки такой возможности.

Для подавления нестабильностей RIP должен использовать малое значение максимально возможного числа шагов (<16).

Медленное распространение маршрутной информации по сети создает проблемы при динамичном изменении маршрутной ситуации (система не поспевает за изменениями). Малое предельное значение метрики улучшает сходимость, но не устраняет проблему.

Несоответствие маршрутной таблицы реальной ситуации типично не только для RIP, но характерно для всех протоколов, базирующихся на векторе расстояния, где информационные сообщения актуализации несут в себе только пары кодов: адрес места назначение и расстояние до него.

В RIP сообщения инкапсулируются в udp-дейтограммы, при этом передача осуществляется через порт 520. В качестве метрики RIP использует число шагов до цели. Если между отправителем и приемником расположено три маршрутизатора (gateway), считается, что между ними 4 шага. Такой вид метрики не учитывает различий в пропускной способности или загруженности отдельных сегментов сети. Применение вектора расстояния не может гарантировать оптимальность выбора маршрута, ведь, например, два шага по сегментам сети ethernet обеспечат большую пропускную способность, чем один шаг через последовательный канал на основе интерфейса RS-232.

Маршрут по умолчанию имеет адрес 0.0.0.0 (это верно и для других протоколов маршрутизации). Каждому маршруту ставится в соответствие таймер тайм-аута и «сборщика мусора». Тайм-аут-таймер сбрасывается каждый раз, когда маршрут инициализируется или корректируется. Если со времени последней коррекции прошло 3 минуты или получено сообщение о том, что вектор расстояния равен 16, маршрут считается закрытым. Но запись о нем не стирается, пока не истечет время «уборки мусора» (2 мин). При появлении эквивалентного маршрута переключения на него не происходит, таким образом, блокируется возможность осцилляции между двумя или более равноценными маршрутами. Формат сообщения протокола RIP имеет вид, показанный на рис. 4.4.11.2. Поле команда определяет выбор согласно следующей таблице:

Таблица 5. Значения кодов поля команда

Команда

Значение

1

Запрос на получение частичной или полной маршрутной информации;

2

Отклик, содержащий информацию о расстояниях из маршрутной таблицы отправителя;

3

Включение режима трассировки (устарело);

4

Выключение режима трассировки (устарело);

5-6

Зарезервированы для внутренних целей sun microsystem.

Поле версия для RIP равно 1 (для RIP-2 двум). Поле набор протоколов сети i определяет набор протоколов, которые используются в соответствующей сети (для Интернет это поле имеет значение 2). Поле расстояние до сети i содержит целое число шагов (от 1 до 15) до данной сети. В одном сообщении может присутствовать информация о 25 маршрутах. При реализации RIP можно выделить следующие режимы:

Инициализация, определение всех «живых» интерфейсов путем посылки запросов, получение таблиц маршрутизации от других маршрутизаторов. Часто используются широковещательные запросы.

Получен запрос. В зависимости от типа запроса высылается адресату полная таблица маршрутизации, или проводится индивидуальная обработка.

Получен отклик. Проводится коррекция таблицы маршрутизации (удаление, исправление, добавление).

Рис. 2. Формат сообщения RIP.

Протокол состояния связей OSPF

Протокол OSPF (Open Shortest Path Firs) является достаточно современной реализацией алгоритма состояния связей (он принят в 1991 году) и обладает многими особенностями, ориентированными на применение в больших гетерогенных сетях.

Протокол OSPF вычисляет маршруты в IP-сетях, сохраняя при этом другие протоколы обмена маршрутной информацией.

Непосредственно связанные (то есть достижимые без использования промежуточных маршрутизаторов) маршрутизаторы называются «соседями». Каждый маршрутизатор хранит информацию о том, в каком состоянии по его мнению находится сосед. Маршрутизатор полагается на соседние маршрутизаторы и передает им пакеты данных только в том случае, если он уверен, что они полностью работоспособны. Для выяснения состояния связей маршрутизаторы-соседи достаточно часто обмениваются короткими сообщениями HELLO.

Для распространения по сети данных о состоянии связей, маршрутизаторы обмениваются сообщениями другого типа. Эти сообщения называются router links advertisement - объявление о связях маршрутизатора (точнее, о состоянии связей). OSPF-маршрутизаторы обмениваются не только своими, но и чужими объявлениями о связях, получая в конце-концов информацию о состоянии всех связей сети. Эта информация и образует граф связей сети, который, естественно, один и тот же для всех маршрутизаторов сети.

Кроме информации о соседях, маршрутизатор в своем объявлении перечисляет IP-подсети, с которыми он связан непосредственно, поэтому после получения информации о графе связей сети, вычисление маршрута до каждой сети производится непосредственно по этому графу по алгоритму Дэйкстры. Более точно, маршрутизатор вычисляет путь не до конкретной сети, а до маршрутизатора, к которому эта сеть подключена. Каждый маршрутизатор имеет уникальный идентификатор, который передается в объявлении о состояниях связей. Такой подход дает возможность не тратить IP-адреса на связи типа «точка-точка» между маршрутизаторами, к которым не подключены рабочие станции.

Маршрутизатор вычисляет оптимальный маршрут до каждой адресуемой сети, но запоминает только первый промежуточный маршрутизатор из каждого маршрута. Таким образом, результатом вычислений оптимальных маршрутов является список строк, в которых указывается номер сети и идентификатор маршрутизатора, которому нужно переслать пакет для этой сети. Указанный список маршрутов и является маршрутной таблицей, но вычислен он на основании полной информации о графе связей сети, а не частичной информации, как в протоколе RIP.

Описанный подход приводит к результату, который не может быть достигнут при использовании протокола RIP или других дистанционно-векторных алгоритмов. RIP предполагает, что все подсети определенной IP-сети имеют один и тот же размер, то есть, что все они могут потенциально иметь одинаковое число IP-узлов, адреса которых не перекрываются. Более того, классическая реализация RIP требует, чтобы выделенные линии «точка-точка» имели IP-адрес, что приводит к дополнительным затратам IP-адресов.

В OSPF такие требования отсутствуют: сети могут иметь различное число хостов и могут перекрываться. Под перекрытием понимается наличие нескольких маршрутов к одной и той же сети. В этом случае адрес сети в пришедшем пакете может совпасть с адресом сети, присвоенным нескольким портам.

Если адрес принадлежит нескольким подсетям в базе данных маршрутов, то продвигающий пакет маршрутизатор использует наиболее специфический маршрут, то есть адрес подсети, имеющей более длинную маску.

Например, если рабочая группа ответвляется от главной сети, то она имеет адрес главной сети наряду с более специфическим адресом, определяемым маской подсети. При выборе маршрута к хосту в подсети этой рабочей группы маршрутизатор найдет два пути, один для главной сети и один для рабочей группы. Так как последний более специфичен, то он и будет выбран. Этот механизм является обобщением понятия «маршрут по умолчанию», используемого во многих сетях.

Использование подсетей с различным количеством хостов является вполне естественным. Например, если в здании или кампусе на каждом этаже имеются локальные сети, и на некоторых этажах компьютеров больше, чем на других, то администратор может выбрать размеры подсетей, отражающие ожидаемые требования каждого этажа, а не соответствующие размеру наибольшей подсети.

В протоколе OSPF подсети делятся на три категории:

? «хост-сеть», представляющая собой подсеть из одного адреса,

? «тупиковая сеть», которая представляет собой подсеть, подключенную только к одному маршрутизатору,

? «транзитная сеть», которая представляет собой подсеть, подключенную к более чем одному маршрутизатору.

Транзитная сеть является для протокола OSPF особым случаем. В транзитной сети несколько маршрутизаторов являются взаимно и одновременно достижимыми. В широковещательных локальных сетях, таких как Ethernet или Token Ring, маршрутизатор может послать одно сообщение, которое получат все его соседи. Это уменьшает нагрузку на маршрутизатор, когда он посылает сообщения для определения существования связи или обновленные объявления о соседях. Однако, если каждый маршрутизатор будет перечислять всех своих соседей в своих объявлениях о соседях, то объявления займут много места в памяти маршрутизатора. При определении пути по адресам транзитной подсети может обнаружиться много избыточных маршрутов к различным маршрутизаторам. На вычисление, проверку и отбраковку этих маршрутов уйдет много времени.

Когда маршрутизатор начинает работать в первый раз (то есть инсталлируется), он пытается синхронизировать свою базу данных со всеми маршрутизаторами транзитной локальной сети, которые по определению имеют идентичные базы данных. Для упрощения и оптимизации этого процесса в протоколе OSPF используется понятие «выделенного» маршрутизатора, который выполняет две функции.

Во-первых, выделенный маршрутизатор и его резервный «напарник» являются единственными маршрутизаторами, с которыми новый маршрутизатор будет синхронизировать свою базу. Синхронизировав базу с выделенным маршрутизатором, новый маршрутизатор будет синхронизирован со всеми маршрутизаторами данной локальной сети.

Во-вторых, выделенный маршрутизатор делает объявление о сетевых связях, перечисляя своих соседей по подсети. Другие маршрутизаторы просто объявляют о своей связи с выделенным маршрутизатором. Это делает объявления о связях (которых много) более краткими, размером с объявление о связях отдельной сети.

Для начала работы маршрутизатора OSPF нужен минимум информации - IP-конфигурация (IP-адреса и маски подсетей), некоторая информация по умолчанию (default) и команда на включение. Для многих сетей информация по умолчанию весьма похожа. В то же время протокол OSPF предусматривает высокую степень программируемости.

Интерфейс OSPF (порт маршрутизатора, поддерживающего протокол OSPF) является обобщением подсети IP. Подобно подсети IP, интерфейс OSPF имеет IP-адрес и маску подсети. Если один порт OSPF поддерживает более чем одну подсеть, протокол OSPF рассматривает эти подсети так, как если бы они были на разных физических интерфейсах, и вычисляет маршруты соответственно.

Интерфейсы, к которым подключены локальные сети, называются широковещательными (broadcast) интерфейсами, так как они могут использовать широковещательные возможности локальных сетей для обмена сигнальной информацией между маршрутизаторами. Интерфейсы, к которым подключены глобальные сети, не поддерживающие широковещание, но обеспечивающие доступ ко многим узлам через одну точку входа, например сети Х.25 или frame relay, называются нешироковещательными интерфейсами с множественным доступом или NBMA (non-broadcast multi-access). Они рассматриваются аналогично широковещательным интерфейсам за исключением того, что широковещательная рассылка эмулируется путем посылки сообщения каждому соседу. Так как обнаружение соседей не является автоматическим, как в широковещательных сетях, NBMA-соседи должны задаваться при конфигурировании вручную. Как на широковещательных, так и на NBMA-интерфейсах могут быть заданы приоритеты маршрутизаторов для того, чтобы они могли выбрать выделенный маршрутизатор.

Страницы: 1, 2, 3, 4, 5, 6, 7



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.