на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Разработка виртуальной лабораторной работы на базе виртуальной асинхронной машины в среде MATLAB
p align="left">S = (1 - )/ 1. (2.2)

Замедление ротора прекратится при такой скорости вращения 1, при которой ЭДС и ток ротора обеспечивают момент М, равный по значению моменту сопротивления Мс механизма, т.к. согласно уравнению движения системы механически связанных тел ускорение (замедление):

(d /dt)= (М - Мс)/J, (2.3)

где J - суммарный момент инерции роторов двигателя и механизма.

Таким образом, энергия источника переменного тока (сети), подводимая к обмотке статора, превращается в механическую энергию на валу, передаваемую рабочему механизму, и частично в потери (в сопротивлениях обмоток, на трение вращающихся частей, на гистерезис и вихревые токи в ферромагнитных сердечниках статора и ротора). При этом ротор вращается со скоростью 1, т.е. асинхронно с магнитным полем.Ротор вращается под действием электромагнитного момента М в направлении вращения магнитного поля. Следовательно, для изменения направления вращения ротора (реверса) необходимо изменить чередование фаз напряжения, подводимого к обмотке статора, т.е. поменять присоединение двух любых проводов.

2.1.2 Генераторный режим с отдачей энергии в сеть

Асинхронные машины, как и все электрические машины, обратимы и при известных условиях могут работать в генераторном режиме.

Допустим, что с помощью какого-либо первичного двигателя ротор асинхронной машины, включенной в сеть, будет вращаться в прежнем направлении, но со скоростью щ, превышающей синхронную щ1. При этом полярность поля статора сохраним ту же, что и в двигательном режиме. Тогда скольжение s станет отрицательным и ротор при вращении будет обгонять вращающееся магнитное поле, а его проводники будут пересекать силовые линии в направлении, обратном тому, которое было при работе машины в двигательном режиме. Вследствие этого ЭДС и токи в роторе изменяют свое на правление на обратное. В результате изменяет свое направление сила взаимодействия вращающегося поля и токов ротора, а также момент на валу, т. е. развиваемый асинхронной машиной момент становится отрицательным по отношению к моменту первичного двигателя. Таким образом, асинхронная машина будет работать генератором, преобразовывая механическую энергию, получаемую or первичного двигателя, в электрическую, отдаваемую в сеть.

2.1.3 Режим электромагнитного тормоза

В практике иногда требуется быстро затормозить асинхронный двигатель, преодолевая его инерцию, или использовать двигатель для торможения приводного механизма, например для уменьшения скорости при спуске грузов в крановых и подъемных сооружениях.

В режиме тормоза асинхронная машина будет работать в том случае, если ротор приводится во вращение посторонним усилием в сторону, противоположную вращению поля (режим противовключения). Совершенно очевидно, что в этом случае вращающий момент будет направлен против направления вращения ротора и будет его тормозить. Чтобы перейти в тормозной режим работы, двигатель должен вначале остановиться, т. е. его скольжение
s = +1. Для осуществления этого режима необходимо в цепь ротора включить значительное сопротивление. После остановки двигателя, ротор, приводимый во вращение посторонним усилием, начнет вращаться в сторону, противоположную вращению поля, и его скорость следует считать отрицательной по отношению к скорости поля щ1. Следовательно, при работе в тормозном режиме скольжение s>+l.

Для быстрой остановки двигателя также используют режим противовключения асинхронных двигателей переключением двух из трех питающих статор проводов. При этом направление вращения поля становится противоположным направлению вращения ротора, который продолжает вращаться за счет силы инерции.

Для уменьшения возникающего при этом всплеска тока в цепь ротора включается реостат, подобно тому, как это было при пуске двигателя. Как известно, при включении в цепь ротора активного сопротивления максимальное значение момента смещается в сторону большего скольжения. Кроме увеличения тормозного момента реостат уменьшает большие величины токов, получающиеся в двигателе при противовключении.

2.2 Устройство асинхронных двигателей

Основными частями асинхронного двигателя являются неподвижный статор и вращающийся внутри него ротор, отделенный от статора воздушным зазором. С целью уменьшения вихревых токов сердечники ротора и статора собираются из отдельных листов, отштампованных из электротехнической стали и изображенных на рисунке 2.2. Листы изолируются друг от друга тонким слоем лака (в маломощных машинах - слоем окалины).

Рисунок 2.2 - Листы сердечника статора и ротора асинхронного двигателя

Сердечник статора встраивается в корпус, являющийся внешней частью машины. Сердечник ротора укрепляется либо непосредственно на валу двигателя, либо на втулке, выполненной в форме крестовины и надетой на вал двигателя. Вал вращается в подшипниках, которые укреплены в торцовых щитах двигателя, называемых подшипниковыми щитами.

Поскольку магнитный поток асинхронного двигателя создается подключенной к сети обмоткой статора, то и намагничивающий ток потребляется двигателем из сети. С целью уменьшения величины этого тока магнитное сопротивление потоку должно быть как можно меньше. Для этого величина воздушного зазора принимается настолько малой, насколько это возможно по соображениям механической конструкции. У машин малой мощности зазор равен 0,3 мм, а у машин большой мощности 1,5 мм. В синхронных машинах, у которых основной поток создается постоянным током, воздушный зазор гораздо больше: он достигает 3-15 мм. Статор асинхронного двигателя ничем не отличается от статора синхронной машины. Как уже было сказано, сердечник статора набирается из отдельных изолированных листов, которые для лучшего охлаждения делятся воздушными каналами на отдельные пакеты. Трёхфазная распределённая обмотка статора асинхронного двигателя, уложена в изолированные пазы статора. Пазы статора, как правило, имеют полузакрытую форму, при которой сохраняется удобство укладки обмотки в пазы и, кроме того, удается получить наименьшие значения тока намагничивания, от которого в свою очередь зависит также и коэффициент мощности cos двигателя. Обмотка статора выполняется из медных изолированных проводников.

Ротор асинхронного двигателя в зависимости от вида обмотки может быть выполнен фазным или короткозамкнутым. Роторы выполняются из листов электротехнической стали, собранных между двумя нажимными шайбами. Пазы ротора (обычно полузакрытой формы) идут вдоль оси машины и равномерно расположены на поверхности по всей окружности.

Наиболее проста конструкция короткозамкнутого ротора, в пазы которого укладываются круглые или прямоугольные стержни из меди или алюминия, неизолированные, замкнутые накоротко на обоих концах ротора при помощи медных или алюминиевых колец большого сечения. Такого рода обмотку принято называть «беличьей клеткой» (рисунок 2.3), она очень прочна, дешева и надежна в работе.

Рисунок 2.3 - Короткозамкнутая обмотка ротора асинхронного двигателя

При Рн ? 100кВт современные короткозамкнутые роторы часто выполняются в виде клетки, изготовляемой заливкой пазов ротора алюминием. Стержни и замыкающие кольца с вентиляционными лопатками представляют собой в этом случае одну цельную отливку.

Ротор асинхронной машины с фазными обмотками - фазный ротор - имеет в пазах трехфазную обмотку, аналогичную обмотке статора. Фазы обмотки соединены в звезду, а выводы обмотки присоединяются к медным контактным кольцам, укрепленным на валу машины и изолированным как друг от друга, так и от вала. На контактных кольцах установлены щётки, выводы от которых расположены в коробке выводов. К этим выводам подключают пусковые или регулировочные реостаты.

2.3 Асинхронные двигатели с улучшенными пусковыми свойствами

Значительное улучшение пусковых характеристик асинхронных двигателей с короткозамкнутым ротором достигается изменением конструкции ротора. В качестве таких конструкций широко используют роторы с двойной короткозамкнутой обмоткой и с глубокими пазами.

2.3.1 АД с глубокопазным ротором

В двигателях с глубокими пазами на роторе его короткозамкнутая обмотка выполняется в виде тонких высоких полос (рисунок 2.4). При такой конструкции обмотки происходит оттеснение тока к верхней части проводников вследствие того, что нижние части проводников сцеплены с большим числом магнитных линий потока рассеяния, чем верхние части.

Таким образом, ток, протекающий по проводникам, стремится сконцентрироваться преимущественно в верхней их части, что равносильно уменьшению поперечного сечения или увеличению активного сопротивления этих проводников.

а) б) в)

Рисунок 2.4 - Схема устройства ротора с глубокими пазами и явление вытеснения тока: а) магнитное поле; б) диаграмма распределения плотности тока; в) рабочая часть проводника

Это явление оттеснения тока в верхние части проводников особенно сильно сказывается в момент включения двигателя, когда частота тока в роторе равна частоте тока сети и, следовательно, при пуске в ход увеличивается активное сопротивление обмотки ротора, в результате чего возрастает пусковой момент. При увеличении скорости вращения ротора частота тока в его обмотке уменьшается, и ток более равномерно распределяется по сечению стержней и при нормальной скорости вращения неравномерность распределения тока по поперечному сечению стержней почти полностью исчезает.

Пусковой момент двигателей этого типа МП = (1,2 - 1,5)МН.

2.3.2 АД с двойной короткозамкнутой обмоткой ротора

Ротор этого типа имеет две короткозамкнутые обмотки, выполненные в виде беличьих клеток (рисунок 2.5).

Число пазов верхней А и нижней Б клеток может быть одинаково или различно.

Рисунок 2.5 - Схема устройства ротора с двойной короткозамкнутой обмоткой

Верхняя клетка А выполнена из стержней малого поперечного сечения, а нижняя Б - из стержней большого поперечного сечения. Поэтому активное сопротивление обмотки А оказывается значительно большим, чем активное сопротивление обмотки Б (rA > rБ).

Вследствие того что стержни внутренней обмотки Б глубоко погружены в тело ротора и окружены сталью, индуктивное сопротивление внутренней обмотки значительно больше, чем индуктивное сопротивление внешней обмотки (ХБ >>XA).

При пуске в ход ток в основном протекает по проводникам внешней обмотки А, имеющей меньшее индуктивное и большее активное сопротивление. Эта обмотка называется пусковой.

В рабочем режиме скольжение мало и, следовательно, частота тока в роторе также мала. Поэтому индуктивные сопротивления обмоток не имеют значения и токи в обмотках А и Б обратно пропорциональны активным сопротивлениям.

Таким образом, в рабочем режиме ток в основном протекает по проводникам внутренней обмотки Б, имеющей меньшее активное сопротивление. Эта обмотка называется рабочей.

При такой конструкции ротора увеличивается активное сопротивление его обмотки в момент пуска в ход двигателя, что увеличивает пусковой момент.

Таким образом, в двигателях с двойной короткозамкнутой обмоткой и с глубокими пазами пусковые моменты больше и пусковые токи меньше, чем у обычных короткозамкнутых двигателей.

Однако рабочие характеристики этих двигателей несколько хуже, чем обычных короткозамкнутых двигателей - несколько меньше cos, КПД и максимальный момент, так как у этих двигателей больше потоки рассеяния, т.е. больше индуктивные сопротивления обмоток ротора, чем у двигателей нормальной конструкции.

2.4 Способы пуска АД с коротокамкнутым ротором

К асинхронным двигателям предъявляются требования по пусковым характеристикам, так как вопросы связанные с пуском в ход, имеют большое значение. При решении вопросов пусковых характеристик необходимо учитывать, с одной стороны, условия работы сети, к которой подключается асинхронный двигатель, и, с другой стороны, требования, которые предъявляются к приводу. Оценка пусковых свойств двигателя производится по пусковым характеристикам, к которым следует отнести начальный пусковой ток Iп, или его кратность Iп/Iн и начальный пусковой момент Мп или его кратность Мп/Мн.

Способы пуска АД с короткозамкнутым ротором: прямой пуск, реакторный и автотрансформаторный.

2.4.1 Прямой пуск АД

В настоящее время в связи со значительным ростом мощностей энергетических систем пуск в ход короткозамкнутых асинхронных двигателей в преобладающем большинстве случаев осуществляется очень простым способом (рисунок 2.6), а именно непосредственным включением в сеть.

В первый момент пуска, когда скорость вращающегося магнитного поля щ1 относительно неподвижного ротора (щ = 0) имеет наибольшую величину, в обмотке ротора будет наводиться значительная ЭДС, величина которой во много раз превышает номинальное значение при вращающемся роторе. Например, если при номинальной нагрузке двигателя скольжение составляет sном = 0,05, а ЭДС в роторе E2ном, то в начальный момент пуска при стоянке ротора, когда s = 1, т. е. в начальный момент пуска ЭДС, наводимая в роторе, будет в 20 раз больше, чем при номинальной нагрузке.

Соответственно значительно возросшей ЭДС ротора ток, создаваемый ею в роторе при пуске, также будет большим, превышающим номинальный в несколько (до восьми) раз. То обстоятельство, что кратность пускового тока в роторе меньше кратности ЭДС, объясняется увеличением реактивного сопротивления ротора при увеличении частоты тока, которая в начальный момент пуска достигает частоты статора.

Страницы: 1, 2, 3



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.