на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Система моделювання Electronics Workbench
p align="left">При розрахунку перехідних процесів використовується еквівалентна схема діода (див. Рис. 3.50, б), для якої ємність переходу визначається за допомогою виражень [67]:

С=Ґу(di/dU)+CJO(1-U/Ut)-m для U<FC*VJ;

С=Ґу(di/dU)+CJO(F3-mU/Ut)/F2 для U?FC*VJ;

У приведених формулах т -- час переносу заряду; CJO -- бар'єрна ємність при нульовому зсуві на переході; VJ -- контактна різниця потенціалів; m = 0,33...0,5 -- параметр переходу.

При малих рівнях сигналів використовується линеалізована еквівалентна схема (мал. 3.50, в), на якій провідність G = dl/d = Ioexp(U/(NUt))/(NUt). При цьому ємність переходу визначається формулами [67]:

С=ҐуG+CJO(1-U/Ut)-m для U<FC*VJ;

С=ҐуG+CJO(F3-mU/Ut)/F2 для U?FC*VJ;

Дослідження прямої галузі ВАХ діодів може бути проведене за допомогою схеми на мал. 3.50, м. Вона складається з джерела струму I, амперметра А (можна обійтися і без нього, оскільки регістрований струм точно дорівнює що задається), досліджуваного діода VD і вольтметра V для виміру напруги на діоді.

а)

б)

Мал.3.51. Схема характеріографа (а), отримана на ньому ВАХ діода (в) і схема для дослідження його зворотньої гілки.

Процес дослідження ВАХ може бути автоматизований за допомогою характеристик осцилографа (мал. 3.51, а, в), у якому формування зображення ВАХ виконується в режимі розгорнення В/А осцилографа, при цьому використовуються сигнал з функціонального генератора і з навантаження діода.

Для дослідження зворотної галузі ВАХ діода використовується схема I див. мал. 3.51, б. У ній замість джерела струму використовується джерело напруги \]\ I із захисним резистором Rz для обмеження струму через діод у випадку його пробою.

Крім одиночних діодів, у бібліотеці EWB мається також діодний місток, I для якого можна додатково задати коефіцієнт емісії N (Emission I Coefficient). Світлодіод -- спеціально сконструйований діод, у якому передбачена можливість висновку світлового випромінювання з області переходу крізь прозоре вікно в корпусі.

При проходженні через діод струму в прилягаючим до переходу областях напівпровідника відбувається інтенсивна рекомбінація носіїв зарядів -- електронів і дірок. Частина вивільнюваної енергії виділяється у виді квантів світла. У залежності від ширини забороненої зони напівпровідника випромінювання може мати довжину хвилі або в області видимого світла, або невидимого інфрачервоного випромінювання. Випромінювання переходів на основі арсеніду галію має довжину хвилі близько 0,8 мкм. Переходи з карбіду кремнію або фосфіду галію випромінюють видиме світло в діапазоні від червоного до блакитного кольору. Найважливішими параметрами світлодіода є яскравість, вимірювана в нітах при визначеному значенні прямого струму, і колір світіння (або спектральний склад випромінювання). Для світлодіода додатково вказується мінімальний струм у прямому напрямку Turn-on current (Ion), при перевищенні якого світлодіод запалюється. Для виміру ВАХ світлодіодів можна використовувати приведені вище схеми. Перемикаючі діоди з р-п-р-п- або п-р-п-р-структурами -- це тірістори [86]. Тиристори, що мають висновки від крайніх електродів, називають діністорами, а прилади з третім висновком (від одного із середніх електродів) -- тріністорами. Крім того, до класу тірісторів відносяться сімістори -- симетричні діністори (діаки), симетричні тріністори (тріаки) і досить рідкий тип діністора -- діод Шоклі, у якому структура п-р-п організована за рахунок наявності в р-гс-переході пасток, формованих шляхом легування. На мал. 3.52 приведені позначення перемикаючих діодів, моделі яких маються в програмі EWB 3.1: (ліворуч праворуч) діод Шоклі, симетричний діністор (діак, двохнаправлений діністор), тріністор (тріодний тірістор) і симетричний тріністор (тріак, сімістор).

Мал.3.52. Діоди, які самі перемикаються.

Для перемикальних діодів задаються значення наступних параметрів (для EWB 5.0 їхні позначення вказуються в квадратних дужках):

Saturation current Is [IS], A -- зворотний струм діністора;

Peak Off-state Current Idrm [IDRM], A -- те ж, але для тріністора;

Switching Voltage Vs [VS], У -- напругу, при якому діністор переключається у відкритий стан;

Forward Breakover Voltage Vdrm [VDRM], У -- те ж, але для тріністора при нульовій напрузі на керуючому електроді; Peak On-State Voltage Vtm [VTM], У -- спадання напруги у відкритому стані; Foward Current at wich Vtm is measured Itm [ITM], A -- струм у відкритому стані;

Turn-off time Tg [TG], з -- час переключення в закритий стан; Holding current Ih [IH], A -- мінімальний струм у відкритому стані (якщо він мень-ші встановленого, то прилад переходить у закритий стан);

Critical rate of f-state Voltage rise dv/dt [DV/DT], У/мкс -- припустима швидкість зміни напруги на аноді тринйетора, при якому він продовжує залишатися в закритому стані (при більшій швидкості тріністор відкривається); Zero-bias junction capacitance Cj [CJO], Ф -- бар'єрна ємність діністора при нульовій напрузі на переході;

Gate Trigger Voltage Vgt [VGT], У -- напругу на керуючому електроді відкритого тринйетора;

Gate Trigger current Igt [IGT], A -- струм керуючого електрода; Voltage at which Igt is measured Vd [VD], У -- напругу, що відмикає, на керуючому електроді.

Перераховані параметри можна задати за допомогою діалогових вікон, аналогічних приведеному на мал. 3.53 для тринйетора.

Дослідження прямої гілки ВАХ тринйетора можна проводити з використанням схеми (мал.3.54), на якій показані джерела вхідної напруги Ui.

Мал.3.53. Діалогове вікно установки параметрів тріністора.

Мал.3.53. Схема для дослідження тріністорів.

3.7 Цифрові мікросхеми

Напівпровідникова електроніка бере свій початок у 1948 р., коли групою розробників фірми Bell був створений перший транзистор. Через 11 років інженерами фірми Texas Instruments була розроблена перша мікросхема, що складалася усього із шести транзисторів, а в 1971 р. нині всесвітньо відома фірма Intel розробила перший 4-розрядний мікропроцесор 4004, що містив більш 2000 транзисторів. Надалі мікромініатюризація електронних компонентів досягла таких темпів, що це послужило приводом для досить образного порівняння в журналі Sientific American (1982 р.): "Якби авіапромисловість в останні 25 років розвивалася настільки ж стрімко, як і промисловість засобів обчислювальної техніки, то зараз літак "Боїнг-767" коштував би 500 доларів і робив обліт земної кулі за 20 хвилин, затрачаючи при цьому 5 галонів палива". Разючі результати, досягнуті в мікроелектроніці, стали можливі завдяки не тільки новітнім напівпровідниковим технологіям, але і величезному багажеві схемотехнічних рішень, накопиченому протягом десятиліть багатомільйонною армією розроблювачів. Незважаючи на вражаючу уяву кількості транзисторів, зібраних на малюсіньких напівпровідникових кристалах, варто все-таки пам'ятати, що вони являють собою набори з найпростіших елементів, до розгляду яких ми і перейдемо.

У залежності від технології виготовлення інтегральні мікросхеми (ІМС) підрозділяються на серії (сімейства), що розрізняються фізичними параметрами базових елементів і їхнім функціональним призначенням. Найбільше поширення одержали ІМС, виготовлені по ТТЛ- і КМДН-технологіям. (ТТЛ -- транзисторно-транзисторна логіка з використанням біполярних транзисторів, КМДН -- з використанням комплементарних МДН-транзисторів).

Першої була випущена ТТЛ-серія SN74/SN54 (74 -- комерційна, 54 -- для військових застосувань). Вітчизняним аналогом серії SN74 стала популярна у свій час серія 155. У 1967 р. додатково розроблені сімейства SN74H/54H (High speed -- швидкодіюча, вітчизняні аналоги -- серії 131 і 130) і SN74L/54L (Low power -- малопотужна, аналоги -- серії 158 і 136).

У 1969 р. розроблена серія SN74S/54S (серії 531 і 530), у 1971 р. -- серія SN74LS/54LS (серії 555 і 533), у 1979 р. -- серія SN74F/54F фірми Fairchild (FAST -- Fairchilds Advanced Schottky TTL, серія 1531), у 1980 р. -- серія SN74ALS/54ALS (серія 1533), у 1982 р. -- серія SN74AS/54AS (у позначеннях серій S -- Schottky, LS -- Low power Schottky, ALS -- Advanced Low power Schottky, AS -- Advanced Schottky, Advanced -- удосконалена). Використання діодів з бар'єром Шоткі дозволило значно підвищити швидкодію ІМС за рахунок запобігання глибокого насичення транзисторів у ключовому режимі. Приємною для розроблювача особливістю всіх перерахованих серій є повне співпадання номерів висновків і позначення типу для ІМС однакового функціонального призначення. Наприклад, якщо SN7472 -- JK-тригер, то позначення 72 буде присутнє для нього у всіх серіях. Цей же принцип використовується й у вітчизняних ІМС, хоча тип тут позначається буквами. Помітимо, що в EWB 5.0 для всіх цифрових IC уведена нумерація висновків, що істотно полегшує задачу визначення їхнього функціонального призначення при зіставленні з вітчизняними аналогами.

У бібліотеці програми EWB використовується тільки серія SN73. У число дактуючих параметрів цифрових ІМС входять наступні (у дужках приводяться позначення для EWB 3.1):

VOH, VOL -- верхній і нижній рівні вихідного сигналу (напруга логічної одиниці і логічного нуля); у EWB 3.1 ці параметри відсутні;

VIH (Vih), VIL (Vil) -- верхній і нижній рівні вхідного сигналу;

TPLH (Tplh) -- затримка поширення сигналу при включенні (звичайно дає на рівні 1,0);

TPHL (Tphl) -- затримка при вимиканні (на рівні ОД); VTG (Vth) -- середня напруга спрацьовування.

Для полегшення роботи з бібліотекою нижче приводиться список вітчизняних аналогів серії SN74 (для стислості деякі повторювані символи опущені):

4 елементи 2І-НІ (цифра 2 означає двовхідний); 4 елементи 2АБО-НІ;

4 елементи 2І-НІ з відкритим колектором (дозволяють підключати навантаження з живленням більш високовольтного джерела живлення);

6 елементів НІ;

6 елементів НІ з відкритим колектором;

6 елементів НІ з відкритим колектором;

6 буферних елементів з відкритим колектором;

4 елементи 2І;

4 елементи 2І с відкритим колектором;

3 елементи ЗІ-НІ;

3 елементи ЗІ;

3 елементи ЗИ-НІ з відкритим колектором;

6 тригерів Шмітта з інверсією (мають підвищену перешкодозахищеність);

6 буферних елементів НІ;

6 буферних елементів з відкритим колектором;

2 елементи 4І-НІ;

2 елементи 4І;

2 елементи 4І-НІ з відкритим колектором;

2 елементи 4І-НІ з входом стробирования;

4 елементи 2І-НІ з відкритим колектором;

4 елементи 2АБО-НІ;

елемент 8І-НІ;

4 елементи 2АБО;

4 елементи 2І-НІ з відкритим колектором;

4 елементи 2І-НІ з відкритим колектором;

2 елементи 4І-НІ з підвищеною навантажувальною здатністю;

7442 555ИД6 дешифратор 4x10 (декодування 4-розрядного двійкового числа в десяткове);

7451 155ЛР11 елементи 2-2І-2АБО-НІ (2 елементи 2І, виходи яких підключені на кристалі ІМС до елемента 2АБО-НІ) і 2-ЗІ-2АБО-НІ (аналогічно для 2-ЗИ);

7454 155ЛР13 елемент 2-3-3-2І-4АБО-НІ (2 елементи 2І и 2 елементи ЗИ об'єднані через 4АББО-НІ);

7455 155ЛР4 Елемент 4-4І-2АБО-НІ (2 елементи 4І об'єднані через 2АБО-НІ) з можливістю об'єднання по АБО (вихідний каскад елемента 2ИЛИ-НІ має додаткові входи транзистора З -- Collector і Е -- Emitter, що і дозволяє здійснити об'єднання по АБО);

7472 155ТВ1 JK-тригер з елементом ЗИ на входах;

155ТМ2 2 D-тригери;

155ТМ7 4 D-тригери з прямими й інверсними виходами;

155ТВ7 2 JK-тригери;

155ТМ5 4 D-тригери з прямими виходами;

134ТВ14 два JK-тригери;

7486155ЛП5 4 елементи що Виключає АБО;

155ИЕ2 4-розрядний асинхронний двійково-десятковий лічильник;

134ИР2 8-розрядний зміщуваний регістр;

155ИЕ4 4-розрядний асинхронний лічильник-дільник на 12;

7493155ИЕ5 4-розрядний асинхронний двійковий лічильник;

74107155ТВ6 2 JK-тригери з роздільною установкою нуля;

74109155ТВ15 2 JK-тригери;

74112 155ТВ9 2 JK-тригери;

74113 155ТВ10 2 JK-тригери з предустановкою нуля або одиниці;

74114 55ТВ11 2 JK-тригери з предустановкою нуля або одиниці і загальним пронуленням;

74125 155ЛП8 4 буфера з трьома станами;

74126155ЛП14 4 формуавтеля з трьома станами;

74132155ТЛЗ 4 тригери Шмітта;

74134155ЛА19 елемент 12І-НІ з трьома станами;

74138155ИД7 дешифратор-демультиплексор 3x8;

74139155ИД142 дешифратора-демультиплексора 2x4;

7414555ИД10 двійково-десятковий дешифратор з відкритим колектором;

74147555ИВЗ пріоритетний шифратор 10-4;

74148155ВЕРБ1 шифратор пріоритетів 8x3;

74150 155КП1 селектор-мультиплексор 16x1;

74151 155КП7 селектор-мультиплексор 8

74 152 155КП5 селектор-мультиплексор 8

74153 155КП2 2 селектора-мультиплексора 4х2.

Страницы: 1, 2, 3, 4, 5, 6, 7



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.