на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Стеганография. Использование программ скрытого шифрования
p align="left">Цифровая стеганография широкое распространение получила в последние 2 года. Стеганография в сочетании с криптографией практически достигает 100% защищенности информации.

1.3 Цифровые водяные знаки

В настоящее время можно выделить три тесно связанных между собой и имеющих одни корни направления приложения стеганографии: сокрытие данных (сообщений), цифровые водяные знаки (ЦВЗ) и заголовки. Остановимся подробнее на втором приложении.

Цифровые водяные знаки могут применяться, в основном, для защиты от копирования и несанкционированного использования. В связи с бурным развитием технологий мультимедиа остро встал вопрос защиты авторских прав и интеллектуальной собственности, представленной в цифровом виде. Примерами могут являться фотографии, аудио и видеозаписи и т.д. Преимущества, которые дают представление и передача сообщений в цифровом виде, могут оказаться перечеркнутыми легкостью, с которой возможно их воровство или модификация. Поэтому разрабатываются различные меры защиты информации, организационного и технического характера. Один из наиболее эффективных технических средств защиты мультимедийной информации и заключается во встраивании в защищаемый объект невидимых меток - водяных знаков. Разработки в этой области ведут крупнейшие фирмы во всем мире. Так как методы цифровых водяных знаков начали разрабатываться совершенно недавно, то здесь имеется много неясных проблем, требующих своего разрешения.

Название этот метод получил от всем известного способа защиты ценных бумаг, в том числе и денег, от подделки. В отличие от обычных водяных знаков цифровые знаки могут быть не только видимыми, но и (как правило) невидимыми. Невидимые анализируются специальным декодером, который выносит решение об их корректности. Цифровые водяные знаки могут содержать некоторый аутентичный код, информацию о собственнике, либо какую-нибудь управляющую информацию. Наиболее подходящими объектами защиты при помощи цифровых водяных знаков являются неподвижные изображения, файлы аудио и видеоданных.

Технология встраивания идентификационных номеров производителей имеет много общего с технологией водяных знаков. Отличие заключается в том, что в первом случае каждая защищенная копия имеет свой уникальный встраиваемый номер (отсюда и название - дословно «отпечатки пальцев»). Этот идентификационный номер позволяет производителю отслеживать дальнейшую судьбу своего детища: не занялся ли кто-нибудь из покупателей незаконным тиражированием. Если да, то «отпечатки пальцев» быстро укажут на виновного. Встраивание заголовков (невидимое) может применяться, например, для подписи медицинских снимков, нанесения легенды на карту и т.д. Целью является хранение разнородно представленной информации в едином целом. Это, пожалуй, единственное приложение стеганографии, где в явном виде отсутствует потенциальный нарушитель.

Наиболее существенное отличие постановки задачи скрытой передачи данных от постановки задачи встраивания ЦВЗ состоит в том, что в первом случае нарушитель должен обнаружить скрытое сообщение, тогда как во втором случае о его существовании все знают. Более того, у нарушителя на законных основаниях может иметься устройство обнаружения ЦВЗ (например, в составе DVD-проигрывателя).

Основными требованиями, которые предъявляются к водяным знакам, являются надежность и устойчивость к искажениям, они должны удовлетворять противоречивым требованиям визуальной (аудио) незаметности и робастности к основным операциям обработки сигналов.

Цифровые водяные знаки имеют небольшой объем, однако, с учетом указанных выше требований, для их встраивания используются более сложные методы, чем для встраивания просто сообщений или заголовков. Задачу встраивания и выделения цифровых водяных знаков из другой информации выполняет специальная стегосистема.

Прежде, чем осуществить вложение цифрового водяного знака в контейнер, водяной знак должен быть преобразован к некоторому подходящему виду. Например, если в качестве контейнера выступает изображение, то и последовательность ЦВЗ зачастую представляется как двумерный массив бит. Для того, чтобы повысить устойчивость к искажениям нередко выполняют его помехоустойчивое кодирование, либо применяют широкополосные сигналы. Первоначальную обработку скрытого сообщения выполняет показанный на рис. 2 прекодер. В качестве важнейшей предварительной обработки цифрового водяного знака (а также и контейнера) назовем вычисление его обобщенного преобразования Фурье. Это позволяет осуществить встраивание ЦВЗ в спектральной области, что значительно повышает его устойчивость к искажениям. Предварительная обработка часто выполняется с использованием ключа для повышения секретности встраивания. Далее водяной знак «вкладывается» в контейнер, например, путем модификации младших значащих бит коэффициентов. Этот процесс возможен благодаря особенностям системы восприятия человека. Хорошо известно, что изображения обладают большой психовизуальной избыточностью. Глаз человека подобен низкочастотному фильтру, пропускающему мелкие детали. Особенно незаметны искажения в высокочастотной области изображений. Эти особенности человеческого зрения используются, например, при разработке алгоритмов сжатия изображений и видео.

Процесс внедрения цифровых водяных знаков также должен учитывать свойства системы восприятия человека. Стеганография использует имеющуюся в сигналах психовизуальную избыточность, но другим, чем при сжатии данных образом. Приведем простой пример. Рассмотрим полутоновое изображение с 256 градациями серого, то есть с удельной скоростью кодирования 8 бит/пиксел. Хорошо известно, что глаз человека не способен заметить изменение младшего значащего бита. Еще в 1989 году был получен патент на способ скрытого вложения информации в изображение путем модификации младшего значащего бита. В данном случае детектор стего анализирует только значение этого бита для каждого пиксела, а глаз человека, напротив, воспринимает только старшие 7 бит. Данный метод прост в реализации и эффективен, но не удовлетворяет некоторым важным требованиям к ЦВЗ.

В большинстве стегосистем для внедрения и выделения цифровых водяных знаков используется ключ. Ключ может быть предназначен для узкого круга лиц или же быть общедоступным. Например, ключ должен содержаться во всех DVD-плейерах, чтобы они могли прочесть содержащиеся на дисках ЦВЗ. Не существует, насколько известно, стегосистемы, в которой бы при выделении водяного знака требовалась другая информация, чем при его вложении.

В стегодетекторе происходит обнаружение цифрового водяного знака в (возможно измененном) защищенном ЦВЗ изображении. Это изменение может быть обусловлено влиянием ошибок в канале связи, операций обработки сигнала, преднамеренных атак нарушителей. Во многих моделях стегосистем сигнал-контейнер рассматривается как аддитивный шум. Тогда задача обнаружения и выделения стегосообщения является классической для теории связи. Однако такой подход не учитывает двух факторов: неслучайного характера сигнала контейнера и требований по сохранению его качества. Эти моменты не встречаются в известной теории обнаружения и выделения сигналов на фоне аддитивного шума. Их учет позволит построить более эффективные стегосистемы.

Различают стегодетекторы, предназначенные для обнаружения факта наличия водяного знака и устройства, предназначенные для его выделения (стегодекодеры). В первом случае возможны детекторы с жесткими (да/нет) или мягкими решениями. Для вынесения решения о наличии / отсутствии цифрового водяного знака удобно использовать такие меры, как расстояние по Хэммингу, либо взаимную корреляцию между имеющимся сигналом и оригиналом (при наличии последнего, разумеется). А что делать, если у нас нет исходного сигнала? Тогда в дело вступают более тонкие статистические методы, основанные на построении моделей исследуемого класса сигналов.

1.4 Атаки на стегосистемы

Для осуществления той или иной угрозы нарушитель применяет атаки.

Наиболее простая атака - субъективная. Злоумышленник внимательно рассматривает изображение (слушает аудиозапись), пытаясь определить «на глаз», имеется ли в нем скрытое сообщение. Ясно, что подобная атака может быть проведена лишь против совершенно незащищенных стегосистем. Тем не менее, она, наверное, наиболее распространена на практике, по крайней мере, на начальном этапе вскрытия стегосистемы. Первичный анализ также может включать в себя следующие мероприятия:

1. Первичная сортировка стего по внешним признакам.

2. Выделение стего с известным алгоритмом встраивания.

3. Определение использованных стегоалгоритмов.

4. Проверка достаточности объема материала для стегоанализа.

5. Проверка возможности проведения анализа по частным случаям.

6. Аналитическая разработка стегоматериалов. Разработка методов вскрытия стегосистемы.

7. Выделение стего с известными алгоритмами встраивания, но неизвестными ключами и т.д.

Из криптоанализа известны следующие разновидности атак на шифрованные сообщения:

- атака с использованием только шифртекста;

- атака с использованием открытого текста;

- атака с использованием выбранного открытого текста;

- адаптивная атака с использованием открытого текста;

- атака с использованием выбранного шифртекста.

По аналогии с криптоанализом в стегоанализе можно выделить следующие типы атак.

Атака на основе известного заполненного контейнера. В этом случае у нарушителя есть одно или несколько стего. В последнем случае предполагается, что встраивание скрытой информации осуществлялось отправителем одним и тем же способом. Задача злоумышленника может состоять в обнаружении факта наличия стегоканала (основная), а также в его извлечении или определения ключа. Зная ключ, нарушитель получит возможность анализа других стегосообщений.

Атака на основе известного встроенного сообщения. Этот тип атаки в большей степени характерен для систем защиты интеллектуальной собственности, когда в качестве водяного знака используется известный логотип фирмы. Задачей анализа является получение ключа. Если соответствующий скрытому сообщению заполненный контейнер неизвестен, то задача крайне трудно решаема.

Атака на основе выбранного скрытого сообщения. В этом случае злоумышленние имеет возможность предлагать отправителю для передачи свои сообщения и анализировать получающиеся стего.

Адаптивная атака на основе выбранного скрытого сообщения. Эта атака является частным случаем предыдущей. В данном случае злоумышленник имеет возможность выбирать сообщения для навязывания отправителю адаптивно, в зависимости от результатов анализа предыдущих стего.

Атака на основе выбранного заполненного контейнера. Этот тип атаки больше характерен для систем ЦВЗ. Стегоаналитик имеет детектор стего в виде «черного ящика» и несколько стего. Анализируя детектируемые скрытые сообщения, нарушитель пытается вскрыть ключ.

У злоумышленника может иметься возможность применить еще три атаки, не имеющие прямых аналогий в криптоанализе.

Атака на основе известного пустого контейнера. Если он известен злоумышленнику, то путем сравнения его с предполагаемым стего он всегда может установить факт наличия стегоканала. Несмотря на тривиальность этого случая, в ряде работ приводится его информационно-теоретическое обоснование. Гораздо интереснее сценарий, когда контейнер известен приблизительно, с некоторой погрешностью (как это может иметь место при добавлении к нему шума).

Атака на основе выбранного пустого контейнера. В этом случае злоумышленник способен заставить отправителя пользоваться предложенным ей контейнером. Например, предложенный контейнер может иметь большие однородные области (однотонные изображения), и тогда будет трудно обеспечить секретность внедрения.

Атака на основе известной математической модели контейнера или его части. При этом атакующий пытается определить отличие подозрительного сообщения от известной ему модели. Например допустим, что биты внутри отсчета изображения коррелированы. Тогда отсутствие такой корреляции может служить сигналом об имеющемся скрытом сообщении. Задача внедряющего сообщение заключается в том, чтобы не нарушить статистики контейнера. Внедряющий и атакующий могут располагать различными моделями сигналов, тогда в информационно-скрывающем противоборстве победит имеющий лучшую модель.

2. Методы, технологии, алгоритмы

Большинство методов компьютерной стеганографии базируется на двух принципах.

Первый состоит в том, что файлы, которые не требуют абсолютной точности (например, файлы с изображением, звуковой информацией и пр.), могут быть до определенной степени видоизменены без потери функциональности.

Второй принцип основан на отсутствии специального инструментария или неспособности органов чувств человека надежно различать незначительные изменения в таких исходных файлах.

В основе базовых подходов к реализации методов компьютерной стеганографии в рамках той или иной информационной среды лежит выделение малозначимых фрагментов среды и замена существующей в них информации на информацию, которую предполагается защитить. Поскольку в компьютерной стеганографии рассматриваются среды, поддерживаемые средствами вычислительной техники и соответствующими сетями, то вся информационная среда, в конечном итоге, может представляться в цифровом виде. Таким образом, незначимые для кадра информационной среды фрагменты в соответствии с тем или иным алгоритмом или методикой заменяются (смешиваются) на фрагменты скрываемой информации. Под кадром информационной среды в данном случае подразумевается некоторая ее часть, выделенная по определенным признакам. Такими признаками часто бывают семантические характеристики выделяемой части информационной среды. Например, в качестве кадра может быть выбран некоторый отдельный рисунок, звуковой файл, Web-страница и др.

Для методов компьютерной стеганографии можно ввести определенную классификацию (рис. 20.2).

Рис. Классификация методов сокрытия информации

По способу отбора контейнера, как уже указывалось, различают методы суррогатной стеганографии, селективной стеганографии и конструирующей стеганографии.

В методах суррогатной (безальтернативной) стеганографии отсутствует возможность выбора контейнера и для сокрытия сообщения выбирается первый попавшийся контейнер, зачастую не совсем подходящий к встраиваемому сообщению. В этом случае, биты контейнера заменяются битами скрываемого сообщения таким образом, чтобы это изменение не было заметным. Основным недостатком метода является то, что он позволяет скрывать лишь незначительное количество данных.

В методах селективной стеганографии предполагается, что спрятанное сообщение должно воспроизводить специальные статистические характеристики шума контейнера. Для этого генерируют большое число альтернативных контейнеров, чтобы затем выбрать наиболее подходящий из них для конкретного сообщения. Частным случаем такого подхода является вычисление некоторой хеш-функция для каждого контейнера. При этом для сокрытия сообщения выбирается тот контейнер, хеш-функции которого совпадает со значением хеш-функции сообщения (т.е. стеганограммой является выбранный контейнер).

В методах конструирующей стеганографии контейнер генерируется самой стегосистемой. Здесь может быть несколько вариантов реализации. Так, например, шум контейнера может моделироваться скрываемым сообщением. Это реализуется с помощью процедур, которые не только кодируют скрываемое сообщение под шум, но и сохраняют модель первоначального шума. В предельном случае по модели шума может строиться целое сообщение. Примерами могут служить метод, который реализован в программе MandelSteg, где в качестве контейнера для встраивания сообщения генерируется фрактал Мандельброта, или же аппарат функций имитации (mumic function).

По способу доступа к скрываемой информации различают методы для потоковых (непрерывных) контейнеров и методы для контейнеров с произвольным доступом (ограниченной длины).

Методы, использующие потоковые контейнеры, работают с потоками непрерывных данных (например, интернет-телефония). В этом случае скрываемые биты необходимо в режиме реального времени включать в информационный поток. О потоковом контейнере нельзя предварительно сказать, когда он начнется, когда закончится и насколько продолжительным он будет. Более того, объективно нет возможности узнать заранее, какими будут последующие шумовые биты. Существует целый ряд трудностей, которые необходимо преодолеть корреспондентам при использовании потоковых контейнеров. Наибольшую проблему при этом составляет синхронизация начала скрытого сообщения.

Методы, которые используются для контейнеров с произвольным доступом, предназначены для работы с файлами фиксированной длины (текстовая информация, программы, графические или звуковые файлы). В этом случае заранее известны размеры файла и его содержимое. Скрываемые биты могут быть равномерно выбраны с помощью подходящей псевдослучайной функции. Недостаток таких контейнеров состоит в том, они обладают намного меньшими размерами, чем потоковые, а также то, что расстояния между скрываемыми битами равномерно распределены между наиболее коротким и наиболее длинным заданными расстояниями, в то время как истинный шум будет иметь экспоненциальное распределение длин интервала. Преимущество подобных контейнеров состоит в том, то они могут быть заранее оценены с точки зрения эффективности выбранного стеганографического преобразования.

По типу организации контейнеры, подобно помехозащищенным кодам, могут быть систематическими и несистематическими. В систематически организованных контейнерах можно указать конкретные места стеганограммы, где находятся информационные биты самого контейнера, а где - шумовые биты, предназначенные для скрываемой информации (как, например, в широко распространенном методе наименьшего значащего бита). При несистематической организации контейнера такого разделения сделать нельзя. В этом случае для выделения скрытой информации необходимо обрабатывать содержимое всей стеганограммы.

По используемым принципам стеганометоды можно разбить на два класса: цифровые методы и структурные методы. Если цифровые методы стеганографии, используя избыточность информационной среды, в основном, манипулируют с цифровым представлением элементов среды, куда внедряются скрываемые данные (например, в пиксели, в различные коэффициенты косинус-синусных преобразований, преобразований Фурье, Уолша-Радемахера или Лапласа), то структурные методы стеганографии для сокрытия данных используют семантически значимые структурные элементы информационной среды.

Основным направлением компьютерной стеганографии является использование свойств избыточности информационной среды. Следует учесть, что при сокрытии информации происходит искажение некоторых статистических свойств среды или нарушение ее структуры, которые необходимо учитывать для уменьшения демаскирующих признаков.

В особую группу можно также выделить методы, которые используют специальные свойства форматов представления файлов:

· зарезервированные для расширения поля компьютерных форматов файлов, которые обычно заполняются нулями и не учитываются программой;

· специальное форматирование данных (смещение слов, предложений, абзацев или выбор определенных позиций букв);

· использование незадействованных мест на магнитных носителях;

· удаление идентифицирующих заголовков для файла.

В основном, для таких методов характерны низкая степень скрытности, низкая пропускная способность и слабая производительность.

По предназначению различают стеганографические методы собственно для скрытой передачи или скрытого хранения данных и методы для сокрытия данных в цифровых объектах с целью защиты самих цифровых объектов.

По типу информационной среды выделяются стеганографические методы для текстовой среды, для аудио среды, а также для изображений (стоп-кадров) и видео среды.

3. Практическая реализация

3.1 Работа с S-Tools

Выбираем файл-контейнер

Перетаскиваем файл предназначенный для скрытия на окно. Вводим пароль и выбираем алгоритм шифрования

Выбираем опции преобразования цвета

Сохраняем файл со скрытой в нем информацией

3.2 Программа ImageSpyer

Загружаем файл-контейнер. Нажимая на кнопку Load:

Кнопка Flash поможет выбрать информацию для шифрования, вводим пароль.

Теперь загружаем файл с зашифрованной информацией, используя ту же самую Load и нажимаем кнопку Catch.

Таким образом получилось выделить скрытую в картинке информацию, предварительно введя тот же пароль:

Об этом и говорит следующее окно:

Выводы

1. Рассмотрены методы стеганографии - прием преобразования информации путем внедрения в информацию иного вида для скрытой передачи, цифровые водяные знаки.

2. Проанализированы приемы и алгоритмы внедрения текстовой информации в графические файлы за счет использования битов с минимальной значимостью.

3. Показано, что стеганография может успешно применяться в случае контейнеров с графической, аудио- и видеоинформацией.

4. Применение стеганографии иллюстрируется программами S-Tools и ImageSpyer, а также авторскими графическими материалами.

Страницы: 1, 2



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.