на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Технология WiMax
p align="left">Таблица 2

Основные режимы в стандарте IEEE 802.16-2004

Режим

Частотный диапазон, ГГц

Опции

Метод дуплексирования

WirelessMAN-SC

10-66

TDD/FDD

WirelessMAN-SCa

<11

AAS/ARQ/STC

TDD/FDD

WirelessMAN-OFDM

<11

AAS/ARQ/STC/Mesh

TDD/FDD

WirelessMAN-OFDMA

<11

AAS/ARQ/STC

TDD/FDD

WirelessHUMAN

<11

DFS/AAS/ARQ/Mesh/STC

TDD

Остальные режимы разработаны для диапазонов менее 11 ГГц. Один из них - WirelessMAN-SCa - это «низкочастотная» вариация WirelessMAN-SC (с рядом дополнительных механизмов, в частности допускается 256-позиционная квадратурная модуляция 256-QAM). Другой, WirelessHUMAN, предназначен для работы в безлицензионных диапазонах (США и Европа). Зато два оставшиеся режима - WirelessMAN-OFDM и WirelessMAN-OFDMA - это принципиально новые по отношению к IEEE 802.16-2001 методы, и на них-то мы обратим особое внимение.

Отметим, что все режимы диапазона ниже 11 ГГц отличают три характерных детали - это механизмы автоматического запроса повторной передачи (ARQ Automatic Repeat Request), поддержка работы с адаптивными антенными системами (AAS Adaptive Antenna System) и пространственно-временное кодирование (STC Space Time Coding) при работе с AAS. Кроме того, помимо централизованной архитектуры «точка-многоточка», в диапазоне ниже 11 ГГц предусмотрена поддержка архитектуры Mesh-сети «сетки» - децентрализованной сети взаимодействующих друг с другом систем.. Фактически Mesh-сеть является аналогом ad-hoc-сетей стандарта IEEE 802.11. Примечательно, что если в документе IEEE 802.16a шла речь о диапазоне 2-11 ГГц, то в новом стандарте нижняя граница так четко не оговаривается упоминается «как правило не ниже 1 ГГц»..

Еще одна особенность стандарта - режим WirelessHUMAN High-speed Unlicensed Metropolitan Area Network. Основные отличия этого режима - это использование только временного дуплексирования, режим динамического распределения частот (DFS Dynamic Frequency Selection) и механизм сквозной нумерации частотных каналов. Однако поскольку в России (да и в Беларуси) безлицензионных диапазонов в гигагерцовой области нет, и ничего подобного нам не грозит, подробно останавливаться на данном режиме не будем.

Принципиально, что существенное внимание в стандарте IEEE 802.16-2004 уделено качеству обслуживания (QoS), а также механизмам защиты данных и соединений. Учитывая, что IEEE 802.16 принципиально ориентирован на работу в лицензируемых диапазонах, а также его фактическое общемировое признание (в Европе он принят ETSI под именем HiperMAN) и поддердку ведущих производителей оборудования (объединившихся в WiMAX Forum), можно с большой уверенностью предположить, что в ближайшие годы нас ожидает новая волна «беспроводной революции» Европейский стандарт HiperMAN, равно как и WiMAX Forum, рассматривает лишь один из режимов стандарта IEEE 802.16-2004, а именно OFDM в диапазоне менее 11 ГГц..

Канальный уровень IEEE 802.16-2004

Стандарт IEEE 802.16 регламентирует работу на физическом и канальном уровнях. Для поддержки протоколов верхнего уровня (ATM, IP и т.д.) предусмотрен подуровень «преобразования сервиса», основная задача процедур которого - распознать и классифицировать тип данных для эффективной их передачи через сети IEEE 802.16. Для оптимизации транслируемых потоков предусмотрен специальный механизм удаления повторяющихся фрагментов заголовков PHS пакетов или ATM-ячеек верхних уровней. Механизм PHS позволяет избавиться от передачи избыточной информации: на передающем конце пакеты приложений в соответствии с определенными правилами преобразуются в структуры данных канального уровня IEEE 802.16, на приемном - восстанавливаются.

Весь поток данных в сетях IEEE 802.16 - это поток пакетов. На основном подуровне канального уровня формируются пакеты данных (MAC PDU), которые затем передаются на физический уровень, инкапсулируются в физические пакеты и транслируются через канал связи. Пакет PDU включает заголовок и поле данных (его может и не быть), за которым может следовать контрольная сумма CRC. Заголовок PDU занимает 6 байт и может быть двух типов - общий и заголовок запроса полосы пропускания. Общий заголовок используется в пакетах, у которых присутствует поле данных. В этом заголовке указывается идентификатор соединения (CID), тип и контрольная сумма заголовка, а также приводится информация о наличии в поле данных подзаголовков и сообщений ARQ.

Заголовок запроса полосы (также 6 байт) применяется, когда АС просит у БС выделить или увеличить ей полосу пропускания в нисходящем канале. При этом в заголовке указывается CID и размер требуемой полосы (в байтах, без учета заголовков физических пакетов). Поля данных после заголовков запроса полосы нет.

Поле данных может содержать: подзаголовки MAC, управляющие сообщения и собственно данные приложений верхних уровней, преобразованные на CS-подуровне. МАС-подзаголовки могут быть пяти типов - упаковки, фрагментации, управления предоставлением канала, а также подзаголовки Mesh-сети и подзаголовок канала быстрой обратной связи Fast Feedback.

Управляющие сообщения - это основной механизм управления системой IEEE 802.16. Всего зарезервировано 256 типов управляющих сообщений, из них используются только 48. Формат управляющих сообщений прост - поле типа сообщения (1 байт) и поле данных (параметров) произвольной длины.

Доступ к каналу предоставляется исключительно базовой станцией по предварительному запросу. Начальная инициализация АС и запрос канала происходят на основе механизма конкурентного доступа в специально отведенных для этого временных интервалах. БС назначает АС время и длительность доступа к каналам в зависимости от типов данных и приоритетов. Канальный ресурс конкретной АС может изменяться посредством опроса (поллинга) со стороны БС или специальных управляющих сообщений со стороны АС при очередной передаче данных. Как видим различия в стандартах IEEE 802.16-2002 и IEEE 802.16 на канальных уровнях весьма несущественны.

3.3Режим WirelessMAN-OFDM

На физическом уровне стандарт IEEE 802.16 предусматривает три принципиально различных метода передачи данных: метод модуляции одной несущей (SC, а в диапазоне ниже 11 ГГц - SCa), метод модуляции посредством ортогональных несущих OFDM Orthogonal frequency division multiplexing и метод множественного доступа посредством ортогональных несущих OFDMA Orthogonal frequency division multiple access.

Режим OFDM - это метод модуляции потока данных в одном частотном канале (шириной 1-2 МГц и более) с центральной частотой . Деление же на каналы, как и в случае SC - частотное. Напомним, что при модуляции данных посредством ортогональных несущих в частотном канале выделяются поднесущих так, что , где - целое число из диапазона (в данном случае ). Расстояние между ортогональными несущими , где - длительность передачи данных в символе.

Помимо данных OFDM-символ включает защитный интервал длительностью , так что общая длительность OFDM-символа (см. рис. 3.9). Защитный

OFDM-символ

Рис. 3.9

интервал представляет собой копию оконечного фрагмента символа. Его длительность может составлять и от .

Каждая поднесущая модулируется независимо посредством квадратурной амплитудной модуляции. Общий сигнал вычисляется методом быстрого преобразования Фурье (ОБПФ) как

, где - комплексное представление символа квадратурной модуляции (QAM-символа). Комплексное представление удобно, поскольку генерация радиосигнала происходит с помощью квадратурного модулятора в соответствии с выражением , где и - синфазное и квадратурное (целое и мнимое) значения комплексного символа, соответственно.

Для работы алгоритмов БПФ/ОБПФ желательно, чтобы количество точек соответствовало . Поэтому число несущих выбирают равным минимальному числу , превосходящему . В режиме OFDM стандарта IEEE 802.16 , соответственно . Из них 55 образуют защитный интервал на границах частотного диапазона канала. Центральная частота канала () и частоты защитных интервалов не используются (т.е. амплитуды соответствующих им сигналов равны нулю).

Из остальных 200 несущих восемь частот - пилотные (с индексами ), остальные разбиты на 16 подканалов по 12 несущих в каждом, причем в одном подканале частоты расположены не подряд. Например, подканал 1 составляет несущие с индексами -100, -99, -98, -37, -36, 1, 2, 3, 64, 65, 66. Деление на подканалы необходимо, поскольку в режиме WirelessMAN-OFDM предусмотрена (опционально) возможность работы не во всех 16, а в одном, двух, четырех и восьми подканалах -- некий прообраз схемы множественного доступа OFDMA. Для этого каждый подканал и каждая группа подканалов имеют свой индекс (от 0 до 31).

Длительность полезной части OFDM-символа зависит от ширины полосы канала BW и системной тактовой частоты (частоты дискретизации) ; . Соотношение нормируется и в зависимости от ширины полосы канала принимает значение 86/75 (BW кратно 1,5 МГц), 144/125 (BW кратно 1,25 МГц), 316/275 (BW кратно 2,75 МГц), 57/50 (BW кратно 2 МГц) и 8/7 (BW кратно 1,75 МГц и во всех остальных случаях).

Защитный интервал при OFDM-модуляции - мощное средство борьбы с межсимвольными помехами (межсимвольной интерференции, МСИ), возникающими вследствие неизбежных в городских условиях переотражений и многолучевого распространения сигнала. МСИ приводит к тому, что в приемнике на прямо распространяющийся сигнал накладывается переотраженный сигнал, содержащий предыдущий символ. При модуляции OFDM переотраженный сигнал попадает в защитный интервал и вреда не причиняет. Однако этот механизм не предотвращает внутрисимвольную интерференцию - наложение сигналов с одним и тем же символом, пришедших с фазовой задержкой. В результате информация может полностью исказиться или (например, при фазовом сдвиге 1800) просто исчезнуть. Для предотвращения потери информации при пропадании отдельных символов или их фрагментов стандарт IEEE 802.16-2004 предусматривает эффективные средства канального кодирования.

Кодирование данных на физическом уровне включает три стадии - рандомизацию, помехозащитное кодирование и перемеживание. Рандомизация происходит почти так же, как в предыдущем стандарте, то есть на блоки данных накладывается псевдослучайная последовательность, вырабатываемая регистром сдвига с характеристическим многочленом .

В нисходящем потоке генератор ПСП инициализируется начальным заполнением . Начиная со второго пакета кадра генератор ПСП инициализируется на основе идентификационного номера базовой станции BSID, идентификатора профиля пакета DIUC Downlink interval usage code и номера кадра (см. рис. 3.10). В восходящем потоке все происходит аналогично, с той лишь разницей, что инициализация генератора ПСП по схеме, приведенной на

Формирование вектора инициализации ПСП для рандомизации нисходящего потока OFDM

Рис. 3.10

рис. 12, происходит с первого пакета (вместо DIUC используется UIUC uplink interval usage code). Кодирование данных сначала происходит с помощью кода Рида-Соломона над , а потом данные кодируются сверточным кодом. В базовом виде код Рида-Соломона оперирует блоками исходных данных по 239 байт, формируя из них кодированный блок размером 255 байт (добавляя 16 проверочных байт). Такой код способен восстановить до 8 поврежденных байт. Поскольку реально используются блоки данных меньшей длины , перед ними добавляются () нулевых байт. После кодирования эти байты удаляются. Если необходимо сократить число проверочных символов, так чтобы уменьшить число восстанавливаемых байт , используются только первые проверочных байтов. Обязательные для поддержки в IEEE 802.16-2004 варианты кодирования приведены в таблице 3.

Таблица 3

Основные режимы в стандарте IEEE 802.16-2004

Модуляция

Блок данных до кодирования, байт

Код Рида-Соломона

Скорость сверточного кодирования

Суммарная скорость кодирования

Блок данных после кодирования, байт

BPSK

12

(12,12,0)

1/2

1/2

24

QPSK

24

(32,24,4)

2/3

1/2

48

QPSK

36

(40,36,2)

5/6

3/4

48

16-QAM

48

(64,48,8)

2/3

1/2

96

16-QAM

72

(80,72,4)

5/6

3/4

96

64-QAM

96

(108,96,6)

3/4

2/3

144

64-QAM

108

(120,108,6)

5/6

3/4

144

Страницы: 1, 2, 3, 4, 5, 6, 7



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.