на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Визуализация генов: методы и проблемы
p align="left">Например, Eagle View, Map View, IGV (таблица 1). В отличие от программного обеспечения эти средства, в первую очередь данные программ просмотра не предоставляют функции редактирования. Из-за их акцента на просмотре многие программы обеспечивают более гибкие возможности, а масштабирование позволяет пользователю свободно уменьшать изображение. Имеющаяся в продаже КГО геномика Workbench является особенно удобной для пользователя и включает в себя собственно считывание согласованных программ, которые могут быть запущены через GUL.

В контексте рессеквенции одна из пар дает ценную информацию о структурных изменениях, таких как вставка, удаление и инверсии. Как уже говорилось, в предыдущем разделе одна из пар может, указывать на неправильную сборку и пользователи могут выполнять обнаружение изменений по проекту ассемблирования и осведомлять об этих проблемах.

LookSeq и Gap5 используют вертикальную ось вращения и указывают размер вставки. Это разделяет одну из пар несовместимости на отдельные участки и визуально отделяет большие размеры вставок, которые предполагают включение результатов. При анализе структурных изменений, важно рассматривать аннотацию генов, например, приводят ли изменения к синонимам или нонсенсам в аминокислотах.

По этой причине некоторые из визуализирующих средств и некоторые законченные программы обеспечения помогают пояснением процессов на дисплее.

Consed служит примером на дисплее согласованной трансляции аминокислот во всех шести считываниях фреймах и позволяет пользователю аннотировать генотипы, повторы и определять гены.

Проблемы NGS и большой объем данных, создают вычислительные и представительные проблемы. Новые форматы файлов на пример выравнивание последовательности (карты SAM) форматы, принятые в 1,000 Геномном проекте, а также компактные форматы выравнивания. CALF обеспечивает компактное хранение данных считывания выравниваний.

Предындексанция, например файлов ВАМ (спутник бинарное представление SAM) - все шире используется для достижения быстрого поиска, случайно согласованных данных и уменьшает требования к памяти интерактивных выравниваний. Например, большинство считываний выравнивания изображений представляет считывание всех доступных файлов с использованием сортировки или колоризации в качестве руководства пользователя.

Тем не менее, это представление разрушается, когда происходит сотни и тысячи считываний карт в одном месте.

Пользователи нуждаются в суммарных методах, которые считывают базы и особенность выравнивания, для того, чтобы получить общий обзор, а также интерактивный доступ к основным востребуемым данным.

Кроме того, современное собрание NGS программ на основе графиков де Брейна производит связывание наборов генов считывания информации, которое может стать комплексом. Ассемблирование графических изображений в том и числе интерактивных изображений появляется для тог, чтобы обеспечить более высокий уровень визуализации собранной структуры.

Часть возможностей ассемблирования обрабатывающих программ обеспечения позволяет мгновенную интеграцию и анализ операций с визуализацией поиска. Последовательность поиска в результате динамической визуализации выравнивания представляет единственный подобный пример. Кроме того, эффективность работы пользователя может быть значительно улучшена путем предоставления рекомендаций, где искать. Например, пользователь может перейти к следующей области «низкого качества согласованности», используя навигационное меню Consed вместо того, чтобы вручную определять расположение. Достижения такого рода интеграции между визуальным и компьютерным анализом будет иметь важное значение в растущей потребности анализа данных.

Просмотр генов

Конечным продуктом секвенирования генома, сборки и обработки циклов являются высокосмежные последовательности, в котором большинство наборов генов имеют длины, что на порядок больше, чем при считывании. Как может исследователь управлять этой последовательностью и обнаруживать интересующие в ней области.

Последовательность содержит справочную систему координат и природную платформу, на которой собираются научные аннотации и геном отображается набором данных из различных источников.

Геномы браузеров были изначально разработаны для отображения данных на ранних собраниях проектов, таких как Элеганс геном и позднее на других модельных организмах (например, в Университете Калифорнийском Санта Круз, UCSC геномный браузер, Ассамблеи геномного браузера и NCBI карт изображений). Эти браузеры имеют много функций и их основные различия были рассмотрены в другом месте. Сегодня браузеры стали стандартными инструментами для изучения геномов, облегчают анализ геномной информации и обеспечивают общую платформу для исследований, обеспечивают хранение и публикацию научных открытий (таблица 2).

Геномный браузер в двух словах

В общем, геномные браузеры отображают данные и биологические аннотации из многих источников, в их геномном контексте, в рамках графического интерфейса. Эти инструменты поддерживают различные типы данных, включая экспрессию генов, вариации генотипов, межвидовые сравнения и многое другое.

Аннотации функционально важных областей, таких как расположение генов, в регионах с транскрипционной активностью и регуляторных элементов, либо вытекают из экспериментальных результатов (например, интерпретация последовательностей) Java Script или моделирование (например, прогнозирование генной модели). И данные и аннотации организованы из « треков», которые могут быть предварительно загружены в геном браузера или загружены по требованию.

Исследователи часто хотят изучать особенности регионов, которые их интересуют, а все нынешние браузеры геномов позволяют пользователю выбирать конкретные места для показа генома.

Большинство инструментов обеспечивают возможность для поиска последовательностей и для конкретной геномной аннотации, (такой как генные имена), которые находятся в основе базы данных.

Многие геномные браузеры также позволяют осуществлять сложные запросы данных и выбирать инструменты для доступа к аннотациям списка для конкретной области или целого генома. Например, Galaxy, услуга, специально предназначенная для взаимодействия с геномом браузера и облегчения обработки данных и анализа. Долей достоинства геномных браузеров, является то, что они являются настраиваемыми. Например, пользователь может принять решения о резолюции, на которой информация отображается (например, окна из нескольких сотен пар оснований по сравнению с десятками тысяч) и масштабирования и паномирование по своему желанию. Данные методы можно свободно расположить в определенном порядке и организовывать, чтобы облегчить их сопоставление.

В большинстве случаев, пользователи также могут выбирать между странами и настраивать несколько режимов отображения, чтобы изучить тот же исход данных. Например, неизменность важных данных, таких как отображения, в виде карты или гистограммы, которые могут быть загружены как модель (образец). Популярность браузера УСК генома вытекает из его гибкости в отображении представленных пользователями данных и его быстром времени отклика. Тем не менее, отображение требует действий и сравнительной оценки пользователя. Например, должен интерпретировать колоколизацию гистона Н3 ацетилирования (Н3ас) с Usf1 связыванием транскрипционных факторов, как и биологически значимых, так и экспериментальных артефактов.

Новое поколение геномных браузеров

Новые и более высокие пропускные способности геномных технологий, в том числе NGS, позволили исследователям создавать беспрецедентный объем данных.

Международный консорциум - например, энциклопедия ДНК элементов (кодирование), программа 37, программа 38, Атлас раковых генов, 1000 Генная и постгенная путевая проектная карта, каждая будет создавать тысячи наборов геномных данных.

Даже сравнительно небольшая группа исследователей, теперь имеют возможность получить большие объемы данных генома в течение короткого периода времени. Появляется новое поколение геномных браузеров и соответствующих баз данных способное эффективно управлять и распространять этот объем данных. Традиционные веб браузеры используют централизованную модель генома, согласно которой данные и связь находятся на стороне сервера. Информационные потоки идут от провайдера в геном серверного браузера, что обеспечивает необходимое изображение и передает его конечному пользователю.

Когда размер данных возрастает до критической точки, существенными трудностями стают затраты сервера и подключение к интернету и это в конечном счете нарушает беспрепятственный геномный просмотр.

Децентрализация данных, связи или сочетание их может облегчить такую нагрузку на сервер. Например, JBrowse использует асинхронный Java Script и XML (AJAX) для распределения работы между сервером и клиентом, и несет значительно меньшие потери сервера, а также заменяет традиционные статистические нагрузки изображений с беспрепятственным анимированием геномной навигации и выборов методов. Annoj40 (аннотация с Java Script) предоставляется аналогичной беспрепятственной Web 2.0 навигацией, однако со стороны клиента она выполняет оказание услуги «холст» MTML элементов, которые поддерживают только некоторые веб браузер. Некоторые другие приложения используют технологии, в поддержку Google Maps API, которые передают время отклика на сторону сервера и создают эффект разрушения равномерности когда навигация локализирована внутри генома.

Другие подходы использования UCSC геномного браузера ухудшают усовершенствования привычных функциональных подходов по отношению к развивающимся Big Bed и Big Wig с их возможностями располагать очень большой объем данных (сотни мегабайтов до гигабайтов информации).

Такие большие объемы данных форматируются и хранятся локально на компьютере клиента. Вместо того, чтобы хранить весь набор данных в базе браузера, браузер получает лишь приблизительную часть данных необходимую для расположения хромосом в гене. Помимо повышения эффективности локально хранимых данных также имеется явное преимущество, связанное с мерой необходимости для защиты личных данных, таких как отдельные человеческие сферы деятельности.

Токийский университет генома браузера UTGB, специально предназначен для просмотра локально хранимых данных индивидуальным образом.

Есть также несколько автономных инструментов в частности два Java - основные пакеты, Aff ymetrix Комплексный геномный браузер (IGB, сообщает ig-bee) и Интерактивное геномное изображение (IGV), разработанное в институте Брода.

К дополнению к экспериментальным данным, связанных с геномной последовательностью, другие типы данных, такие как клиническая информация, связанная с образцами, зачастую имеет решающее значение в интерпретации данных геномов. Некоторые недавно разработанные геномные браузеры, предназначенные для обеспечения платформы для интеграции больших объемов данных геномов, в особенности раковой геномной информации. Они включены в YCSC, Раковый геномный браузер,IGV и молекулярный анализ рака, разработанный в Портале амер. Национального Института рака. Основным нововведением этих новых инструментов является одновременное отображение данных генов и клинической информации.

Эти браузеры отображают расположение целого генома, изображая экспериментальное измерение для отдельных образцов и наборов образцов в виде горячих карт.

Клинические признаки показуют целую геномную информацию в отдельной тепловой карте.

Следовательно, появляется возможность взаимодействовать с браузером, располагать в определенном порядке, фильтровать агрегаты и отображения данных в соответствии с клиническими признаками, аннотировать биологическим путем или редактировать пользователем коллекцию генов.

Статистический анализ может быть применен к определенным наборам данных и графикам в браузере.

УСК геномный браузер рака использует изображения тепловых карт, на которых х-оси координат и геномные оси у необходимы для стека больших геномов, где каждая строка предоставляет данные образца. Этот дисплей позволяет легко определять закономерности всей выборки. Например, пользователь может точно определить , где область хромосомы по местоположению PTEN, удаляя их периодически, по имеющимся в наличии образцам опухолей головного мозга. Ниже тепловые карты генома можно просмотреть суммарно и те данные, где очевидно есть характерные изменения количества видимых копий.

Клинические тепловые карты позволяют исследователям визуально изучить взаимосвязь между геномным измерением и отдельными клиническими признаками, имеющимися в распоряжении пользователей на основе их уровня доступа к данным. Перестройка вертикальной (клинической пробы) необходима как в клинических так и в геномных тепловых картах, и может быть выполнена одновременной сортировкой на основе численно закодированных клинических функций или совокупности признаков.

Например, когда глиобластомные данные отсортированы на опухоли сравнения, то существует очевидная разница между генами, содержащими эти два типа образца и «нормальными образцами», отображающими какое-либо крупное нарушение, которое характеризуется большим количеством копий опухолей.

Ограничение визуализации последовательности данных в основе координат взаимодействие между двумя местоположениями генома. Кроме того, глобластные тенденции в геномах лучше оценивать в контексте возможностей, которых нет на геномной карте.

Страницы: 1, 2, 3



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.