на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Занятия по MATLAB в компьютерном классе
/b>Использование режима zoom:

k=100; y=sin(2*pi*k*x); plot(y)

2.Автоматическое чередование цветов. Теперь будем, как правило, нумеровать строки.

1;x=linspace(0,1,20); k=.1:.1:.8; y=k'*x; plot(x,y)

Здесь определяется вектор-строка x=0:20, затем вектор-строка k из 8 угловых коэффициентов, далее получается матрица y=k'*x как произведение вектора-столбца k' на вектор-строку x. Строки этой матрицы состоят из точек соответствующих прямолинейных отрезков. Наконец, строятся графики этих отрезков как функций от x - первая нижняя линия (она желтая) соответствует k=.1, последняя, тоже желтая, - для k=.8. Мы видим, что цвета, которых всего 7, чередуются циклически в таком порядке (под русскими английские названия):

желтый фиолетовый голубой красный зеленый синий белый

yellow magenta cyan red green blue white

Вызовем строку 1 и отредактируем в ней команду plot:

1;x=linspace(0,1,20); k=.1:.1:.8; y=k'*x; plot(x,y,'g.')

т.е. добавим там третий (текстовой, ибо он в апострофах) аргумент. Все кривые на рисунке станут зелеными (green), а линии будут изображаться отдельными точками. Аналогично употребляются и другие цвета из этого списка - по первой букве. В текстовом аргументе может быть до трех символов. Для изображения точек графика помимо . употребляются еще : -- -. * x o + и некоторые другие символы.

3.Графики в полярных координатах:

x=1:.01:3; nx=length(x); r=x.^2; fi=linspace(0,5*pi,nx); polar(fi,r)

4.Еще один пример - легко строятся многозначные функции:

x=0:.1:6*pi; y=cos(x); plot(x,y) plot(y,x)

5.Управление осями:

axis off axis on axis ([-10,10,-5,20]) axis auto axis equal axis square

Размеры осей можно задавать и для трехмерной графики, но цвета в ней используются для характеристики величины ординаты и команда zoom там не работает.

Тема 4. Простые примеры, иллюстрирующие эффективность MATLAB

1. Суммирование. Найдем при заданном n частичную сумму ряда s(n) = 1/k^2, k=1:n. Для этого выполним строку

1;n=100; k=1:n; f=k.^(-2); plot(cumsum(f)), [sum(f),pi^2/6] =1000

Команда cumsum(f) подсчитывает все частичные суммы s(k) от f(1:k) для каждого k от 1 до n, так что на графике можно наблюдать процесс формирования нужной нам величины. В конце строки выдается численный и точный результаты:

ans = 1.6350 1.6449 .

Полагая n=1000, получим

ans = 1.6439 1.6449 ,

т.е. ошибку в 1 единицу 4-й значащей цифры.

Сходимость не всегда столь очевидна, как на этом графике. Чтобы в этом убедиться, усложним наш пример: при заданных m>1 и n найдем частичную сумму ряда s(m,n) = sum(1/k^m), k=1:n (при m=1 получается уже расходящийся гармонический ряд). Для проведения вычислений отредактируем строку 1:

2;m=2; n=1000; k=1:n;f=k.^(-m); plot(cumsum(f)), sum(f)

=1.5 =1e4

=1.2

и сначала для проверки получим свой старый результат. Но уже при m=1.5 у нас, глядя на график, нет полной уверенности в достижении сходимости. Это тем более так при m=1.2: для n=1000 ans=4.3358, а для n=1e4 ans=4.7991. Факт сходимости ряда при m=1.01 нельзя установить численно из-за низкой скорости его сходимости.

Чтобы лучше запомнить действие команды cumsum, вычислим (x/sin(x))dx, x[0, 3]. Подинтегральная функция f=x/sin(x) не имеет в нуле особенности, и поэтому достаточно выполнить строку

3;n=100; h=3/n; x=h/2:h:3-h/2; f=x./sin(x); plot(h*cumsum(f)), grid, sum(h*f) =1000

т.е. аппроксимировать f в серединах интервалов (эти точки x называют полуцелыми в отличие от концов счетных интервалов - целых точек). Сравнение ответа ans = 8.4495 и графика наводит на мысль о том, что пока сходимость еще не достигнута, но при n=1e3 ans = 8.4552, так что при n=1e2 со сходимостью в действительности все в порядке, а возрастание функции h*cumsum(f) на правом конце происходит из-за роста там функции f - это можно увидеть, выполнив

4;plot(f)

Для матрицы A команды sum и cumsum работают вдоль столбцов (значит, по первому индексу), а для вектора - вдоль него независимо от того, строка это или столбец. Чтобы провести суммирование для матрицы A вдоль ее строк, нужно выполнить sum(A,2), т.е. указать для выполнения команды второй индекс. Это правило относится ко многим командам MATLAB'a и к многомерным матрицам тоже - по умолчанию имеется в виду первый индекс, а в противном случае нужно всегда указывать, по какому индексу должна работать команда, и это указание не сохраняется для последующих команд.

2. Произведения. Аналогично суммированию с помощью команд prod и cumprod вычисляются и обрабатываются произведения. Например, найдем (1-1/k^2), k=2:100 (при k1/2), выполнив строку

1;n=100; k2=(2:n).^2; a=1-1./k2; cp=cumprod(a); cp(end), plot(cp/.5), grid

Результат cp(end) = 0.5050 говорит о том, что сходимость здесь не очень быстрая. Это видно и из графика, на котором представлена относительная ошибка результата. Обратите внимание на названия переменных k2=k^2 и cp=cumprod(..): при выборе имен переменных всегда нужно стремиться к тому, чтобы эти имена хоть как-то отражали суть дела (это особенно важно при написании больших программ, где много переменных).

При вычислении произведений можно выйти за числовую шкалу. Найдем, например, для каких k можно найти k!. Ясно, что максимально допустимое km вряд ли больше 200, так что строка

2;n=200; k=1:n; kf=cumprod(k); plot(kf)

должна дать ответ на наш вопрос. Из-за быстрого возрастания kf и ограниченной разрешимости дисплея (это не более 0.5% от максимального значения на графике) мы видим всего одну точку kf(km), перед которой, как нам ошибочно кажется, идут нули и за которой идут числа inf (infinity), вообще никак не представленные на рисунке. Точно так же графика обходится и с переменной NaN (not a number), и это обстоятельство может быть иногда полезным. Переменная NaN возникает в таких ситуациях:

0/0 inf-inf inf/inf

Переменные inf и NaN (они получаются со знаком) можно использовать в программах. Для определения km выполним строку

3;sum(isinf(kf))

в которой isinf(kf) выдаст 1 на тех позициях вектора размеров kf, где элементы kf есть inf, и 0 на остальных позициях. Поскольку ans=30, km=n-30=170, что можно было бы получить и сразу, выполнив строку

4;km=sum(isfinite(kf))

где isfinite отмечает те элементы числовой переменной, которые отличны от inf и NaN. При выходе произведения за числовую шкалу для сомножителей можно использовать команды

log (взятие натурального логарифма),

log10 (взятие десятичного логарифма),

abs (взятие модуля),

sign (взятие знака, выдающее 1, 0 и -1).

3. Логические задачи. Обычно при освоении программирования логические действия даются труднее арифметических. Приведем здесь два простых примера задач логического характера.

1. Напишем строку для нахождения общих элементов двух векторов:

x=1:20; y=15:30; [X,Y]=meshgrid(x,y); v=X(X==Y)

2. Второй пример несколько сложнее, и начинающие изучать MATLAB обычно пытаются решить его с помощью циклов for-end, что совершенно неправильно. Взяв на сторонах единичного квадрата по 200 интервалов, определим, сколько точек получившейся таким образом сетки попадает внутрь вписанной в него окружности. Нужная программа имеет вид

1;tic, x=0:1/200:1; [X,Y]=meshgrid(x); M=abs(X+i*Y-.5-i*.5)<1/2; s=sum(M(:)), t1=toc

и даст ответ s=31397 точек, t1=0.16 сек, тогда как строка для циклов for-end

2;tic, s=0;w=1:201; for I=w,for J=w,if norm([x(I),x(J)]-.5)<.5,s=s+1; end,end,end, s ,t2=toc

дает то же самое s и t2=7.47 сек, так что t2/t1=46. Это лишний раз говорит о том, что нужно разумно подходить к использованию операторов языка программирования.

Упражнения

4. Усовершенствуйте, как можете, обе строки последнего примера и посмотрите, как изменится значение t2/t1.

5. Проверьте, что при вычислении определителя квадратной матрицы M порядка n методом Гаусса нужно выполнить 2n3/3 операций сложения и умножения. Считая их одинаковыми по времени выполнения, найдите, за какое время t выполняется 1 млн операций, взяв n=500 и выдав время счета det(M).

6. Используя предыдущий результат, оцените число арифметических операций для вычисления функций sin и exp.

7. Оцените число операций, которое затрачивается в MATLAB'е для организации одного шага в цикле for-end.

8. Прочтите в help описания команд max, diff, sort и с их помощью попробуйте составить программу, которая для заданной квадратной матрицы M определяла бы, что M является нижней треугольной с ненулевыми элементами на главной диагонали или получается из таковой перестановкой столбцов.

Тема 5. Графический способ решения уравнений

1. Простой пример: найти корни уравнения x*sin(x^2)=0 на отрезке [0,3]. Программа:

1;x=0:.01:3; f=x.*sin(x.^2); plot(x,[f;0*f]), grid

2;ginput

В команде ginput точка снимается нажатием левой клавиши мыши, Enter - выход из ginput.

Проверим это другим способом:

3;nx=length(x); w=1:nx-1; x(find(f(w).*f(w+1)<0|f(w)==0))

Отв: 0, 1.77, 2.5.

Эту строку можно упростить:

4;nx=length(x); w=1:nx-1; x(f(w).*f(w+1)<0|f(w)==0)

Матрицы и векторы с элементами 0-1.

2. Сложный пример - неявные функции. Построим график неявной функции f(x,y)x3y-2xy2+y-0.2=0, x,y=[0, 1]. Это выполнит программа

1;h=.02; x=0:h:1; [X,Y]=meshgrid(x); f=X.^3.*Y-2*X.*Y.^2+Y-.2;

2;v=[0,0]; contour(x,x,f,v), grid

На графике зеленая линия (справа она двузначная) представляет искомый результат. Область в первом квадранте между этими кривыми обозначим через G. Эту задачу совсем непросто сделать в других системах программирования прежде всего потому, что вычисление образующих линии уровней точек - в общем случае очень сложная процедура.

Выясним, какой знак имеет f в области G, для чего выполним

3;mesh(x,x,f.*(f>0))

Это пример трехмерной, т.е. xyz-графики. В ней цвет используется для изображения амплитуды (значения z), изменяясь с ростом z от темно-синего через голубой, зеленый и желтый до темно-красного.

Вычислим площадь S этой области:

4;S=h^2*sum(f(:)>=0) (S=0.7296).

Для h=0.01 выполним строку 1, затем строку 4 и получим S=0.7204, а для h=0.005 найдем S=0.7152. При интегрировании всегда естественно делать такие проверки.

Выясним, какой объем заключен между поверхностью f(x,y) и областью G, где f(x,y)>=0. Для этого снова возьмем в строке 1 h=0.02 и вычислим

5;V=h^2*sum(f(f>=0)) (V=0.1268)

Для h=0.01 V=0.1235, а для h=0.005 V=0.1219. Теперь не нужно писать f(:), поскольку f(f>=0) есть вектор.

Конечно, эти результаты приближенные (с точностью до 1 - 2%), но отметьте, как быстро и просто они были получены. Такие приемы можно применять для решения достаточно широкого круга задач.

Выполним строку

6;C=contour(x,x,f); clabel(C)

которая зашлет числовую информацию о графике в матрицу C и построит график, выбрав значения уровней автоматически. Из матрицы C можно последовательно выбирать все кривые.

Обобщения. Графическим способом можно решать системы уравнений и уравнения в комплексной плоскости. Команда contour3 строит линии уровней для функций f(x,y,z), при этом сетки по аргументам всегда должны быть прямоугольными.

Страницы: 1, 2, 3, 4, 5



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.