на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Ионный источник Кауфмана

ток в 10 раз больше, чем для потока с диаметром 7,5 см. Активность

использования эмитированных электронов зависит от конфигурации нити накала

и размещения катодного узла в разрядной камере. Более равномерное

распределение концентрации заряженных частиц и, следовательно, более

однородные ионные потоки могут быть получены в источнике с несколькими

идентичными нитями накала, размещенными около стенок анодного цилиндра.

В большинстве МИИ используется прямонакальный катод, хотя может

применяться также и катод с косвенным накалом. Термокатод изготавливается

из вольфрамовой или танталовой проволоки (ленты). Для улучшения

эмиссионных характеристик катод может покрываться слоем щелочноземельных

элементов, однако это приводит к распылению катодного покрытия и

загрязнению ионного потока нежелательными примесями.

Магнитная система с дивергенцией поля обеспечивает повышенную

концентрацию и однородность плазмы в зоне экстракции и способствует

уменьшению потерь в разряде. Таким образом удается сформировать равномерный

по сечению ионный поток достаточно большого диаметра. Магнитные системы

такого типа используются в установках Microetch фирмы Veeco(CШA).

Мультипольные системы на постоянных магнитах, в зоне полюсных наконечников

которых размещаются аноды, позволяют получить пучки большого диаметра с

однородностью 0,9.

Ионно-оптическая система МИИ должна обеспечивать: одновременную

экстракцию и первичную фокусировку многопучкового потока; ускорение ионов

до энергий I00 эВ - 2,0 кэВ; минимальные потери мощности пучка; минимальную

эрозию сеток при длительной эксплуатации источника.

ИОС ИИИ представляет собой сборку из двух (или трех) сеток с

отверстиями одинакового диаметра. Число отверстий соответствует числу

ионных пучков. Сетки имеют вид плоских или выгнутых в сторону разряда

тонких металлических (графитовых) дисков. От формы сеток зависит форма

ионного потока. Наиболее часто используются плоские сетки. Вся система

сетчатых электродов юстируется оптическим способом с целью достижения

соосности отверстий.

Каждая из сеток (экстрагирующая, ускоряющая, замедляющая) имеет

определенный потенциал. Экранирующая (экстрагирующая) сетка находится под

высоким(до 8 кВ) отрицательным потенциалом, замедляющая сетка - под нулевым

потенциалом (заземлена). Для увеличения ионного тока следует увеличивать

ускоряющее напряжение и уменьшать расстояние между сетками.

Число отверстий в единице площади определяется параметрами плазмы на

границе разряда и ускоряющим потенциалом. Прозрачность системы сетчатых

электродов (площадь отверстий, отнесенную к общей площади сетки) в

технологических МИИ стремятся увеличить до максимума.

В процессе работы источника сетчатые электроды испытывают

термическую нагрузку. Центральная часть экранирующей сетки нагревается до

670-770 К, ускоряющей сетки - до 570-670 К. Края электродов разогреваются

на IОО-300 К меньше, чем их центральная часть.

ИОС МИИ должна удовлетворять следующим требованиям:

иметь максимальную прозрачность при оптимальном соотношении между

диаметром отверстий и расстоянием между ними;

иметь минимально возможное (при отсутствии электрического пробоя)

расстояние между ускоряющей и экранирующей сетками;

толщина сеток должна быть минимально возможной при обеспечении

механической прочности и стабильности межсеточного расстояния с учетом

разогрева до 570-670 К;

сетки должны изготавливаться из тугоплавких материалов (молибден,

графит) с низким коэффициентом температурного расширения и малым

коэффициентом распыления;

ИОС должна юстироваться оптически для обеспечения соосности отверстий;

должно быть оптимизировано отношение потенциала плазмы и потенциалу

ускоряющей сетки.

В технологических МИИ возникает необходимость нейтрализации

пространственного заряда ионного потока, обусловленная, во-первых, низкой

скоростью распыления диэлектрических мишеней вследствие накопления на них

поверхности положительного заряда и, во-вторых, расфокусировкой ионного

потока.

Нейтрализация осуществляется двумя способами:

I. На пути ионного потока размещается вольфрамовая или танталовая

нить, является термоионным эмиттером. Недостатки этого метода - малый

ресурс внешнего термоионного эмиттера, распыление материала нити и

загрязнение обрабатываемой поверхности. Применение метода ограничено

ионными пучками малого диаметра.

2. Метод "плазменного моста", состоящий в формировании

вспомогательного плазменного потока, замыкающегося на ионный пучок и

обеспечивающего нейтрализацию.

Многоаппертурные источники ионов серийно выпускаются в США фирмами

Veeco, Commonwelth Seintific, Ion Tech, CSC и другими в виде универсальных

автономных установок и в составе технологических систем.

3. Модификации источника Кауфмана и тенденции его развития

Для повышения однородности потока используются мультипольные системы

на постоянных магнитах, в зоне полюсных наконечников которых размещаются

аноды, и мультикатодные системы /4/.

Ионный источник с мультикатодной системой разработанный фирмой CSC

представлен на рис.17.

Ионный источник с мультикатодной системой

[pic]

I - экстрактор, 2 - анод, 3 - электромагнит, 4 - система катодов

(мультикатоды), 5 - напуск рабочего газа, 6 - водяное охлаждение.

Рис.17

Можно выделить следующие тенденции развития технологических

многолучевых источников:

увеличение диаметра ионного потока;

использование нескольких термокатодов с целью повышенения

равномерности пространственного распределения плазмы в объеме

разрядной камеры;

увеличение ресурса термокатодов;

применение мультипольных магнитных систем и многоанодных систем

для повышения однородности плазмы в разрядной камере;

нейтрализации объемного заряда ионного потока.

4. Применение ионных источников в технологии

В технологических процессах создания сверхбольших и сверхскоростных ИС

(СБИС и ССИС) широко используются ионные, ионно-плазменные и

плазмохимические процессы взаимодействия ионных потоков и

низкотемпературной плазмы с поверхность твердого тела. В универсальных

технологических системах, оборудованных ионными источниками можно проводить

многие операции очистки, ионно-пучкового травления и распыления. В

полупроводниковой микроэлектронике широко применяются технологии ионной

имплантации и реактивного ионно-лучевого травления (РИЛТ) /1/.

Применение совокупности электронно-ионных процессов, получивших общее

название «элионная технология», позволяет повысить точность изготовления

микроструктур, создать высокопроизводительное автоматизированное

промышленное оборудование.

Ионно-лучевая обработка материалов характеризуется следующими

особенностями:

большая энергия активирующего воздействия пучков на материал, подвергаемый

обработке;

возможность управления пучками с малой инерционностью посредством

электромагнитных полей;

селективность активирующего воздействия;

возможность управления технологическим процессом с помощью ЭВМ;

ионные процессы протекают в вакууме или плазме, что гарантирует сохранение

чистоты обрабатываемого материала.

В полупроводниковой ыикроэлектронине широко применяется технология

ионной имплантации. Ионная имплантация - эффективный метод технологической

обработки, основанный на взаимодействии управляемых потоков ионов с

поверхностью твердого тела с целью изменения его свойств, связанных с

атомной структурой. Установка ионной имплантации представляет собой

электрофизический комплекс, генерирующий пучок с заданными свойствами,

создающий возможность взаимодействия пучка с мишенью и обеспечивающий

контроль и управление характеристиками пучка и объектам имплантации /5/.

Ионный источник является одним из важнейших узлов установки

ионной имплантации. От конструкции источника зависит надежность и основные

рабочие характеристики всей установки в целом.

Установки имплантации для производства СБИС и ССИС характеризуются

широким диапазоном параметров:

масса легирующих примесей 1 - 250 а.е.м.

ток ионного пучка 10-9-5*10-2 А

энергия ионов 5-3[103 кэB

доза имплантации 109 -1017 см2

производительность до 4 м2 кремния /г

Выделяют три основных группы промышленных установок ионной

имплантации: высокоэнергетические, малых и средних доз, больших доз с

интенсивными ионными пучками.

Основными легирующими примесями в технологическом процессе

имплантации являются такие элементы, как бор, фосфор, мышьяк, сурьма, цинк,

алюминий, селен, галий. Для радиального воздействия используется водород,

аргон, азот, гелий.

Рабочее вещество может подаваться в разрядную камеру источника в виде

элементарного газа или газоразрядных соединений твердых веществ . Для

ионизации твердых веществ используется их испарение в тигле, нагреваемом

до высоких температур, и последующая подача паров рабочего вещества в

разрядную камеру источника. Используется также эффект катодного распыления

тугоплавкого материала и его ионизация в плазме вспомогательного

инертного газа.

Промышленное применение разнообразных методов ионно-лучевой обработки

материалов повышает требования к ионным источникам. Главным образом это

касается увеличения интенсивности ионных потоков, повышения ресурса,

возможности использования различных рабочих веществ и разных сортов ионов,

высокой стабильности рабочих параметров, снижения энергоемкости и

металлоемкости установки.

заключение

Существует большое разнообразие ионных источников, применение которых

в технологии микроэлектроники открывает широкие перспективы.

Ионный источник Кауфмана по сравнению с другими имеет ряд существенных

преимуществ: низкое напряжение разряда ((20 В), благодаря чему ионный пучок

содержит небольшое количество примесей (10-6%) и имеет малый энергетический

разброс; механизм поддержания стационарного разряда позволяет применять

многолучевое извлечение ионного пучка и работать с однородными потоками

большого диаметра; осцилляция электронов позволяет использовать низкое

давление в разрядной камере, что снижает потери пучка и уменьшает

загрязнение мишени; источник имеет высокий газовый к.п.д. (80 %) и высокий

энергетический к.п.д.

Однако этот источник имеет ряд недостатков конструкции: использование

термокатода ограничивает срок службы источника и не позволяет работать с

химически активными рабочими веществами, кроме того, плазма в магнитном

поле подвержена неустойчивостям, ухудшающим стабильность параметров ионного

пучка и его оптические свойства.

Типичные параметры технологического источника Кауфмана ток ионов (Аr+)

10 мА, напряжение разряда 20 В, напряжение на ускоряющем электроде 20кВ.

Существуют возможности улучшения конструкции этого ионного источника,

в частности применение мультикатодной и мультипольной систем.

Применение ионных процессов позволяет повысить точность изготовления

микроструктур и создать высокопроизводительное автоматизированное

промышленное оборудование.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Технология ионных источников, В.В. Коткин, Москва, Учебное пособие

МИФИ, 1990г, 86 стр.

Интенсивые электронные и ионные пучки. С.И. Молоковский А.Д.Сушков,

Москва ,Энергоатомиздат 1991г , 302 стр. .

2. Физика и технология источников ионов. Я. Браун, Москва, Мир 1998г,

420 стр.

3. Обзоры по электронной технике. «Реактивное ионное травление»,

выпуск 1 (1010) 1984 г.

Технология материалов электронной техники, В.В. Крапухин, И.А. Соколов,

Г.Д. Кузнецов, Москва МИСИС, 490 стр. 1995 г.

Страницы: 1, 2



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.