на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Прогресс в создание композиционных материалов

условиях, имитирующих ядерный взрыв; деградации покрытия не наблюдалось.

Для защиты от грозовых разрядов на 50% поверхности стабилизатора напыляли

тонкий слой алюминия. При разряде с силой тока 200000А в обшивке

наблюдались лишь незначительные повреждения. Летные испытания В-1

подтверждают эффективность применения композиционных материалов (далее КМ)

в его конструкции.

Использование сочетаний стекло- и углепластиков для панелей пола

трехслойной конструкции пассажирских самолетов позволило добиться

существенного снижения массы: для широкофюзеляжного самолета ИЛ-86 на 400

кг (площадь пола 350 м2), для самолета ЯК-42 на 100 кг.

Успешное опробование самолетов, изготовленных с использованием КМ,

позволило фирмам США сделать вывод о возможности перехода от летных

испытаний и демонстрационных полетов к серийному внедрению КМ. В самолете F-

16, состав используемых материалов был следующим: 83% алюминиевых сплавов,

2% титановых сплавов, 5 стальных конструкций и 2% новых КМ.

В последние годы возрастает интерес к применению КМ в судостроении. В

США, например, возлагаются надежды на использование КМ для

суперглубоководных средств. Анализ зависимости возможной глубины погружения

от конструктивных характеристик аппарата выявляет преимущества

высокопрочных и высокомодульных КМ. Высокая демпфирующая способность

последних, сочетающихся с конструкциями из стеклопластиков,

полиармированных КМ и т.п., приводит к уменьшению перегрузок, возникающих

при взрывах. Малая плотность КМ при обеспечении пожаробезопасности

позволяет применять их в архитектуре надводной части судов всех типов, что

способствует улучшению устойчивости, уменьшению радиолокационной заметности

судов, облегчению эксплуатации корпуса. Одним из интересных применений КМ в

судостроении является использование углепластиков для подводных крыльев

судов. Для предотвращения влагопоглощения детали плакируются листовым

титаном.

Автомобильные фирмы США (Ford и General Motors) прорабатывают вопросы

применения КМ в конструкции автомобилей. Так, например, изучена конструкция

ведущего вала двигателя из углепластиковой трубки, охватывающей стальной

сердечник. Двухлетние испытания новой конструкции подтвердили ее высокую

эффективность и надежность в эксплуатации (в частности, высокую

коррозионную стойкость) при снижении массы на 2 кг.

Композиционные материалы с металлической матрицей

КМ с металлической матрицей находятся на более ранней стадии своего

развития, чем КМ на основе полимеров. Причиной такого положения является,

по всей вероятности, тот факт, что большинство из разработанных к

настоящему времени армирующих высокопрочных волокон не обладает свойством

совместимости по отношению к матричным сплавам. Механическое поведение КМ

определяется совокупностью значений трех основных параметров: относительной

сохраненной прочностью волокон в КМ (отношением прочности волокон в КМ к

прочности исходных волокон), относительной прочностью связи волокон с

матрицей (отношением прочности КМ при сдвиге к когезионной прочности

матрицы) и относительной сохраненной пластичностью матрицы (отношением

пластичности матрицы в КМ к исходной пластичности матричного сплава). То

или иное соотношение этих параметров определяет механизм разрушения и весь

комплекс механических свойств КМ. Так, например, при низкой прочности связи

волокон с матрицей и достаточно высоких значениях двух других параметров

разрушение КМ начинается с нарушения целостности границ раздела компонентов

и завершается независимым, раздельным разрушением несвязанного (слабо

связанного пучка) армирующих волокон и матрицы. При низкой сохраненной

пластичности матрицы (охрупчивании матрицы) трещины в КМ, появившиеся при

разрушении наименее прочных волокон, легко транслируются через матрицу и за

счет концентрации напряжений у их устья перерезают встретившиеся на их пути

волокна, так что образец КМ разрушается одной магистральной трещиной при

весьма низких расчетных напряжениях. При достаточно высоких значениях

рассматриваемых параметров появление трещин в КМ при разрушении слабых

волокон не приводит к разрушению материала: развитие микротрещин тормозится

внутренними поверхностями раздела (матрица-волокно), а сам материал при

этом не теряет своей несущей способности.

Взаимодействие компонентов при изготовлении КМ с металлической

матрицей проходит, как правило, при высоких температурах и значительных

давлениях, что необходимо для обеспечения пропитывания матричным сплавим

капиллярно-пористого каркаса из армирующих волокон и формирования

монолитного материала. Комплекс физико-химических явлений, составляющих

процесс взаимодействия компонентов КМ, обусловливает формирование связи

между компонентами, с одной стороны и изменение их свойств - с другой.

Совместимыми следует считать компоненты, на границе которых возможно

достижение прочности связи, близкой к когезионной прочности матрицы, при

сохранении высоких начальных значений их механических свойств. Максимально

достижимая величина характеристических параметров может быть принята за

оценку совместимости компонентов КМ. Это обстоятельство и определило, по

всей вероятности, опережающее развитие боралюминия - наиболее близкого к

стадии внедрения металлического КМ. Следует отметить, что совместимость

других волокон с металлическими матрицами может быть улучшена за счет

изменения формы сечения, размеров и свойств поверхности волокна, применения

защитных покрытий на волокнах или матричных сплавов оптимального состава и

т.п. Решение проблемы совместимости для конкретной пары компонентов может

привести к бурному развитию соответствующего КМ.

Направления развития композиционных материалов армированных волокнами.

KM с полимерной матрицей, армированной высокомодульными и

высокопрочными волокнами, в последние годы прошли стацию опробования в

различных изделиях современной техники и вступили в стадию широкого

внедрения. Расширение внедрения КМ несколько сдерживается недостаточностью

знаний по влиянию комплекса внешних воздействий на работоспособность

конструкций из КМ. Таким образом, основной задачей в ближайшие годы будет

повышение эксплуатационной надежности и работоспособности КМ с полимерной

матрицей при комплексном воздействии эксплуатационных и климатических

факторов (температуры, влажности, атмосферного электричества, солнечной

радиации, топлива и других химических сред, эрозионных воздействий, горения

и т.п.). Серьезным тормозом в вопросе применения КМ в отраслях

промышленности с массовым производством является их высокая стоимость, в

связи, с чем основными областями применения КМ в ближайшие годы будут, по-

видимому, военная и гражданская авиация, отрасли военной промышленности.

Отражением главной тенденции развития KM - стремления к регулированию в

широких пределах их характеристик является создание полиармированных КМ, в

которых сочетаются различные армирующие компоненты. Создание и

многостороннее изучение полиармированных КМ существенно расширит область

применения КМ с полимерной матрицей. Для КМ с металлической матрицей идет

период разработки: некоторая близость к стадии опробования и внедрения

проявляется для углеалюминия. Комбинированное армирование с целью более

широкого регулирования характеристик материалов находит свое применение и

для КМ с металлической матрицей (боралюминий и углеалюминий с

дополнительным армированием титановой фольгой), однако в этом направлении

сделаны лишь первые шаги. В ближайшие годы следует, по-видимому, ожидать

интенсификации работ в области совершенствования жидкофазных способов

изготовления КМ с металлическими матрицами, в том числе непрерывного литья

армированных изделий. Эти методы в достаточной мере универсальны и

позволяют получить различные КМ: конструкционные (угле- и боралюминий),

антифрикционные ( Pb-Sn, Cu-Sn и др. с углеродным волокном) и т.п. Большой

интерес представляют получаемые литейными методами металлические КМ с

поликристаллическими волокнами из AIxOy. Общими для всех КМ вопросами,

возникающими в связи с их применением в различных конструкциях, являются:

. необходимость создания инженерных методов расчета деталей и узлов из

КМ;

. создание методов неразрушающего контроля;

. продолжение и расширение исследований работоспособности деталей и

узлов из КМ при комплексном воздействии служебных и климатических

факторов;

. стабилизация и усовершенствование технологии с целью уменьшения

вариации свойств КМ и снижения трудоемкости изготовления деталей;

. удешевление армирующих волокон и самих КМ;

. дальнейшее повышение свойств КМ и их эксплуатационной надежности, в

частности, за счет повышения прочности связи на границе раздела

компонентов КМ[3].

Композиционный материал «биокерамика-никелид титана».

В настоящее время в медицине используется новый класс композиционных

материалов ”биокерамика-никелид титана”. В таких композитах одна

составляющая (например, никелид титана) обладает сверхэластичностью и

памятью формы, а другая — сохраняет свойства биокерамики.

В качестве керамической составляющей может выступать фарфор, который

широко используется в ортопедической стоматологии и является хрупким

материалом. Высокая хрупкость фарфора обусловлена тем, что на границах

различных фаз и зерен возникают контактные напряжения, значительно

превосходящие уровень средних приложенных напряжений. Релаксация контактных

напряжений в керамическом материале возможна, если в зоне этих напряжений

происходит диссипация энергии за счет фазового превращения в никелиде

титана. Изменение температуры или приложение нагрузки вызывает в никелиде

титана мартенситное превращение, что приводит к эффективной релаксации

напряжений в матрице при нагружении композиционного материала, позволяя

твердой составляющей нести приложенную нагрузку. Известно, что упругое

восстановление объема пористых прессовок из порошка сверхупругого никелида

титана связано с разрывом межчастичных контактов и определяется прочностью

брикета, которая зависит от пористости и величины сил контактного

сцепления. Ослабление этих сил путем добавления к порошку никелида титана

других компонентов, например мелкодисперсных вольфрама или карбида кремния,

значительно повышает упругий эффект, так как прочные одноименные контакты

титан–никель заменяются разноименными. Поскольку величина упругого эффекта

снижается при уменьшении содержания никелида титана в прессовке,

концентрационная зависимость упругого восстановления объема обычно является

экстремальной. В композиционном материале ”фарфор–никелид титана”

компоненты слабо взаимодействуют и после спекания контакты между

керамической и металлической составляющей ослаблены. При нагружении они

разрываются в первую очередь, и упругое восстановление объема растет. В

результате деформация является обратимой, и композит проявляет свойства,

подобные сверхэластичности. Биосовместимость композиционного материала

”стоматологический фарфор–никелид титана” изучалась гистологическим

методом, оценивая реакцию тканей у крыс на имплантацию под кожу передней

брюшной стенки образцов из композиционного материала и из фарфора. Характер

тканевых реакций, их распространенность и особенности клеточных изменений в

обоих случаях оказались однозначными. Таким образом, было показано, что

композиционные материалы ”биокерамика–никелид титана” являются

биосовместимыми[5].

Роль поверхности раздела в композиционных материалах.

Быстро растущий в последнее время интерес к поверхностям раздела

станет понятным, если проследить историю развития композитов с

металлической матрицей. Ранние работы по композитным материалам были

направлены на выявление принципов, определяющих их эксплутационные

характеристики. Для этой цели были удобны простые модельные системы. При

выборе модельных систем руководствовались в основном совместимостью

упрочнителя и матрицы. Модельные системы состояли из матриц (например,

серебра или меди), химически мало активных по отношению к упрочнителям

(например, вольфраму или окиси алюминия). Хотя в этих работах и

признавались, важная роль поверхностей раздела, модельные системы позволяли

сравнительно легко получать тип поверхности, обеспечивающий необходимую

передачу нагрузки от одного компонента композита к другому. В системах,

представляющих большой практический интерес, матрицами служат обычные

конструкционные материалы, такие, как алюминий, титан, железо, никель. Они

обладают большими реакционной способностью и прочностью, чем матрицы

модельных систем. Повышенная реакционная способность затрудняет управление

состоянием поверхности раздела (под поверхностью раздела понимаются зона

взаимодействия упрочнителя и матрицы, имеющая конечную толщину), а для

передачи больших нагрузок требуется более высокая прочность этой

поверхности. Таким образом, состояние поверхности раздела становилось все

более важным фактором по мере того, как интересы исследователей

перемещались от модельных систем к перспективным инженерным материалам.

Проблемы, связанные с состоянием поверхности раздела, свойственны не

только композитам с металлической матрицей. Для улучшения состояния

поверхности раздела в стеклопластиках стеклянные волокна подвергают

аппретированию. Известно, что оптимальное аппретирование является нелегким

компромиссом между рядом требований, таких, как защита отдельных нитей от

механических повреждений, хорошая связь стекла с полимером, сохранение этой

связи в условиях эксплуатации, особенно в присутствии влаги. Оптимизация

состояния поверхности раздела в композитных материалах с металлической

матрицей требует, по-видимому, аналогичных компромиссных решений.

Требования к поверхности раздела в металлических композитных материалах не

менее жестки, чем для стеклопластиков. Так, уже упоминалась химическая

несовместимость многих сочетаний матрица-волокно вследствие как

недостаточной, так и излишней реакционной способности (в первом случае

имеются в виду системы, где механическая связь компонентов не достигается

из-за отсутствия соответствующих физико-химических эффектов). Еще одно

важное требование - стабильность поверхности раздела, оно становится

решающим в условиях высокотемпературной эксплуатации, для которых,

собственно, и предназначены композиты с металлической матрицей. Кроме того,

металлические композитные материалы должны работать в разнообразных

условиях нагружения, чем неметаллические, поскольку в металле возможны

различные случаи внеосного нагружения, передаваемого матрицей в тех

направлениях, где упрочняющей фазы мало или вовсе нет.

Первоначально при выборе матрицы и волокна для всех систем

предполагали использовать те же основные принципы, что и для модельных

систем. Справедливость правила смеси для композитов, как с непрерывными,

так и с короткими волокнами была показана на системе медь-вольфрам. Медь и

вольфрам, по существу, взаимно не растворимы и не взаимодействуют

химически, соответственно они не образуют соединений. Таким же образом на

модельной системе серебро - усы сапфира был убедительно продемонстрирован

эффект упрочнения нитевидными кристаллами. Степень взаимодействия между

серебром и усами сапфира даже меньше, чем между медью и вольфрамом,

поскольку расплавленное серебро не смачивает сапфир. Для улучшения связи с

расплавленным серебром на поверхность сапфира напыляют никель. Однако связь

между никелем и сапфиром вероятно чисто механическая и на поверхности

раздела никель-сапфир твердый раствор не образуется. Для взаимной

смачиваемости матрицы и волокна необходимо, чтобы их взаимная растворимость

и реакционная способность были малы или вообще отсутствовали. Это условие,

как правило, реализуется для определенного типа композитных материалов, а

именно, ориентированных эвтектик. Во многих эвтектиках предел растворимости

несколько изменяется с температурой, что, вообще говоря, является причиной

нестабильности, хотя в известной степени и компенсируется особым

кристаллографическим соотношением фаз. В большинстве практически важных

случаев это условие не выполняется. После конференции 1964г. "Американского

общества металлов", посвященной волокнистым композитным материалам основные

успехи были достигнуты в области управления состоянием поверхности раздела

между упрочнителем и матрицей. Ни серебро, ни медь не являются

перспективными конструкционными материалами. Что же касается реакций между

практически важными матрицами и соответствующими упрчнителями, то они очень

сложны и могут приводить к самым разнообразным типам поверхностей раздела.

Одно из первых систематических исследований типов поверхностей раздела

было проведено Петрашенком и Уитоном. Они исследовали ряд систем медный

сплав - вольфрам, ими были выделены три типа поверхностей раздела между

легированной матрицей и упрочнителем. Они соответствуют: а) на периферии

проволоки наблюдается рекристаллизация; б) на поверхности раздела

образуется новая фаза; в) матрица и проволока взаимно растворяются.

Первые модели поверхности раздела были основаны на представлениях об

отсутствии растворимости или химического взаимодействия на поверхности

раздела. Согласно этим представлениям, поверхность раздела бесконечно

тонка, а свойства не связаны с собственного поверхностью. Например,

понятием "прочность поверхности раздела" часто характеризовали предельное

напряжение в слое матрицы, непосредственно примыкающем к волокну. Далее

было сделано предположение, что поверхность раздела прочнее матрицы и

поэтому передача нагрузки от волокна к волокну определяется пластическим

течением матрицы.

В системах Ni-C и Ti-B на границе волокно матрица появляется зона

конечной толщины, отличающаяся по свойствам, как от матрицы, так и от

волокна. Анализ системы Ni-C был начат Эбертом и др. Они использовали

дифференциальные методы для оценки влияния диффузии в зоне раздела на

механические свойства компонентов. Эта работа является одновременно и

первым анализом немодельных систем, хотя она и была ограничена лишь

системами с химическим континуумом, т.е. непрерывным изменением состава. В

системах Ti-B наличие продукта реакции приводит к химическому дисконтинууму

- прерывистому изменению состава, что усложняет задачу, поскольку следует

рассматривать еще две поверхности раздела.

В докладе на симпозиуме "Американского института горных и

металлургических инженеров", посвященном композитным материалам с

металлической матрицей, Бэрт и Линч назвали совместимость волокна и матрицы

проблемой, определяющей развитие технологии указанных композитов. Хотя

авторы рассматривали как физико-химические, так и механические аспекты

совместимости, отмечалось, что главные трудности связаны с разупрочнением

при химическом взаимодействии. В качестве возможных путей решения проблемы

были предложены следующие три направления работ:

1. Разработка новых упрчнителей, термодинамически стабильных по отношению

к матрице.

2. Применение защитных покрытий для уменьшения взаимодействия между

волокном и матрицей.

3. Применение легирования для уменьшения активности диффундирующих

компонентов.

При изучение совместимости системы диборида титана с титаном

оказалось, что она существенно выше, чем в системе Ti-B, однако в

дальнейшем это направление не развивалось под действием ряда факторов.

Главный из них - низкая прочность и высокая плотность волокна диборида

титана. Поэтому основное внимание стали уделять второму и третьему из

перечисленных выше направлений[1].

Заключение.

Композиционные материалы постепенно занимает все большее место в

нашей жизни. Уже достаточно трудно представить современную стоматологию без

композитных материалов. Области применения композиционных материалов

многочисленны. Кроме авиационно-космической, ракетной и других специальных

отраслей техники, они могут быть успешно применены в энергетическом

турбостроении, в автомобильной и горнорудной, металлургической

промышленности, в строительстве и т.д. Диапазон применения этих материалов

увеличивается день ото дня и сулит еще много интересного. Можно с

уверенностью сказать, что это материалы будущего.

Список литературы.

1. Современные композиционные материалы, под ред. П.Крока и Л.Броумана,

пер. с англ., М., 1978г.

2. Волокнистые композиционные материалы, пер. с англ., М., 1967г.

3. Итоги науки и техники «Композиционные материалы», под ред. Л.П.Кобец,

М.-1979г.

4. Большая советская энциклопедия, главн. Ред. А.М.Прохоров, М., 1973г.,

том 12.

5. В.И. Итин и др./ Письма в ЖТФ том 23 №8 (1997) 1-6.

Страницы: 1, 2



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.