на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Атомно-эмиссионный спектральный анализ
p align="left">2.3 Искра

2.3.1 Низковольтная искра

Увеличение емкости шунтирующего конденсатора приводит к тому, что запасенная в нем энергия будет играть заметную роль в общем балансе разряда. Такой тип разряда получил название низковольтной искры. В зависимости от параметров контура низковольтной искры можно получать различные режимы разряда: колебательный (CR2/4L<1), критический (CR2/4L>1), апериодический (CR2/4L?1).

Напряжение на конденсаторах разрядного контура обычно варьируют в интервале 450-1000 В. Изменяя емкость конденсаторов, сопротивление реостатов в силовой цепи и индуктивность вторичной обмотки трансформатора, можно регулировать соотношение между силой тока разряда конденсаторов и силой тока, проходящей через силовую цепь, и тем самым плавно менять температуру разряда в нужном направлении (от мягкого дугового режима до чисто искрового). Современные электронные средства позволяют стабилизировать энергию единичных импульсов с точностью не хуже 0,1%.

2.3.2 Высоковольтная искра

При спектральном анализе металлов и сплавов наиболее часто в качестве источника света используют высоковольтную конденсированную искру (рис. 5). Повышающий трансформатор заряжает конденсатор С до напряжения 10-15 кВ. Значение напряжения определяется сопротивлением вспомогательного промежутка В, которое в свою очередь выбирают всегда большим сопротивления рабочего промежутка А. В момент пробоя вспомогательного промежутка одновременно происходит также и пробой рабочего промежутка, конденсатор С разряжается, а затем заряжается. В зависимости от параметров схемы и скорости деионизации промежутка следующий пробой может произойти или в этом же, или в другом полупериоде. Простота и надежность этой схемы обеспечили ее успешную эксплуатацию.

Рис. 5. Схема управляемой конденсированной высоковольтной искры:

Т -- повышающий трансформатор на 15000 В; С -- конденсатор; L -- переменная индуктивность; r -- блокирующее сопротивление; А -- рабочий промежуток; В -- постоянный вспомогательный промежуток; R -- регулируемое сопротивление

В момент пробоя в узком искровом канале происходит возбуждение, а также высвечивание атомов и молекул азота и кислорода воздуха; это бесполезное и даже мешающее излучение (фон). Однако его длительность невелика (?10-8 с). В следующий момент ток (до 50 А), проходящий через канал, разогревает малую площадку (0,2 мм) электрода. Плотность тока достигает 104 А/см2, и материал электрода выбрасывается в разрядный промежуток в виде факела раскаленных паров, причем, как правило, не вдоль искрового канала, а под некоторым случайным углом к нему.

Каждый новый пробой воздействует на разные участки поверхности образца, и после обыскривания в течение всего выбранного времени экспозиции на образце возникает пятно обыскривания диаметром до 3-5 мм, но незначительной глубины (при работе с угольным противоэлектродом -- всего 20-40 мкм). Общее количество испаряющейся за время экспозиции твердой пробы весьма невелико: например, для сталей оно обычно составляет около 3 мг.

Факел выброшенных паров имеет температуру порядка 10000 К, т.е. достаточную не только для возбуждения спектров металлов, но также неметаллов и ионов. Температура непосредственно в начале искры достигает 30000-40000 К.

2.4 Высокочастотная индуктивно-связанная плазма

Благодаря появлению нового способа возбуждения спектров с помощью источника высокочастотной индуктивно-связанной плазмы (ИСП), работающей при атмосферном давлении, произошел резкий скачок в развитии физики, техники и практики атомно-эмиссионного спектрального анализа. Данный источник представляет собой разновидность безэлектродного высокочастотного разряда, поддерживаемого в специальной горелке, состоящей из концентрически расположенных трех (реже -- двух) кварцевых трубок (рис. 6). В зазор между внешней и промежуточной трубками подается внешний (охлаждающий) поток газа (аргон или молекулярный газ), по средней трубке -- промежуточный поток (только аргон), по центральной трубке осуществляется транспорт аэрозоля анализируемого раствора в плазму. Открытый конец горелки окружен охлаждаемой водой индукционной катушкой, соединенной с ВЧ-генератором. Для получения плазмы используют ВЧ-генераторы с потребляемой мощностью 1,5-5 кВт и рабочей частотой в диапазоне от 27 до 50 МГц.

Рис. 6. Схема горелки для высокочастотного индукционного разряда:

1 -- аналитическая зона; 2 -- зона первичного излучения; 3 -- зона разряда (скин-слой); 4 -- центральный канал (зона предварительного нагрева); 5 -- индуктор; 6 -- защитная трубка, предотвращающая пробой на индуктор (устанавливается только на коротких горелках); 7, 8, 9 -- внешняя, промежуточная, центральная трубки соответственно

Для возбуждения разряда необходима предварительная ионизация газа, поскольку напряжение на индукторе значительно меньше напряжения пробоя рабочего газа. С этой целью чаще всего используют высоковольтную искру (катушку Тесла). В ионизированном газе возникает разряд, питаемый магнитным полем. Ток высокой частоты, протекающий через катушку-соленоид, создает переменное магнитное поле. Под его воздействием внутри катушки индуцируется вихревое электрическое поле. Вихревой электрический ток нагревает и ионизирует поступающие снизу порции газа за счет джоулевого тепла. Токопроводящая плазма аналогична короткозамкнутой вторичной обмотке трансформатора, магнитное поле которой сжимает кольцевой ток в тор (скин-эффект).

Поток аргона, подаваемый в зазор между промежуточной и внешней трубками, с одной стороны, служит плазмообразующим газом, а с другой -- отжимает раскаленную плазму от стенок горелки, предохраняя их от перегрева и разрушения. Аэрозоль анализируемой пробы распространяется вдоль центрального канала разряда, практически не задевая электропроводящего скин-слоя и не влияя на его характеристики; в этом заключается одна из главных особенностей ИСП-разряда, отличающая его, например, от дуговых плазмотронов.

Обычно в плазму вводят аэрозоль, образованный раствором пробы в водном или органическом растворителе. Наряду с этим применяется введение проб в виде конденсатов, образующихся при испарении пробы в электротермическом атомизаторе, дуге, искре, плазме лазерного факела, а также в виде тонкодисперсных порошков, взвешенных в потоке газа или жидкости. Для ввода жидких проб используются различные конструкции пневматических распылителей (концентрический распылитель Мейнхарда, уголковые распылители, распылитель Бабингтона, сетчатый распылитель Гильдебранда и др.), а также ультразвуковых распылителей. Во всех типах распылителей используется принудительная подача раствора пробы с помощью перистальтического насоса.

В ультразвуковых распылителях распыление происходит за счет энергии акустических колебаний, а газовый поток служит только для переноса аэрозоля в горелку. Эти распылители образуют тонкий аэрозоль с узким распределением частиц по размерам. Эффективность их генерации, по крайней мере, в 10-20 раз больше, чем у пневматических распылителей, что позволяет получать лучшее отношение сигнал /фон и снижать предел обнаружения.

Можно выделить следующие безусловные достоинства источника ИСП применительно к задачам атомно-эмиссионного спектрального анализа (АЭСА):

1. благодаря возможности эффективного возбуждения как легко-, так и трудновозбудимых линий ИСП является одним из наиболее универсальных источников света, в котором можно определять (детектировать) почти все элементы периодической системы. ИСП наиболее универсальный источник не только по числу определяемых элементов, но и по типу содержащих эти элементы соединений;

2. в ИСП можно анализировать как большие массы растворов, подавая их в плазмотрон непрерывным потоком, так и микрообъемы (порядка сотен микролитров) при их импульсном введении в транспортирующий газ и импульсной регистрации спектров;

3. диапазон определяемых концентраций для большинства элементов составляет 4-5 порядков, т.е. в ИСП можно определять как малые и средние, так и большие концентрации того или иного элемента, что затруднительно для других источников возбуждения спектров. Градуировочные графики для многих элементов прямолинейны, параллельны друг другу и имеют угол наклона около 45°, что упрощает градуировку и снижает вероятность появления систематических погрешностей анализа;

4. благодаря высокой эффективности возбуждения и малому фону, пределы обнаружения большинства элементов на 1-2 порядка ниже, чем в других источниках возбуждения спектров. Средний предел обнаружения при анализе растворов по всем элементам составляет примерно 0,01 мг/л, снижаясь для некоторых из них до 0,001-0,0001 мг/л;

5. при стабилизации и оптимизации всех рабочих условий факел ИСП обладает хорошей пространственно-временной стабильностью, что обеспечивает высокую инструментальную воспроизводимость аналитических сигналов, иногда на уровне 0,5-1%.

К недостаткам метода спектрометрии ИСП относится сравнительно высокая стоимость эксплуатации спектрометров, связанная с большим расходом аргона (15-20 л/мин). Определение следовых содержаний металлов вблизи предела обнаружения осложняется наличием в спектре молекулярных полос -NO и -ОН в области 200-260 и 280-340 нм, которые возникают на периферии разряда, в месте контакта его с атмосферой. Для снижения интенсивности этих полос применяют горелки с удлиненной на 40-50 мм внешней трубкой с прорезанным окном для вывода излучения.

Для ИСП-разряда характерны очень развитые спектры, с большим числом линий, принадлежащих атомам, а также одно- и двухзарядным ионам. В связи с этим применение данного источника возбуждения осложнено эффектами спектральных помех, что обусловливает более высокие требования к разрешающей силе спектральных приборов. Из-за меньшей яркости источника возрастает роль рассеянного света в приборе.

3. ГОМОЛОГИЧЕСКИЕ И АНАЛИТИЧЕСКИЕ ПАРЫ СПЕКТРАЛЬНЫХ ЛИНИЙ

При изменении температуры источника возбуждения спектра (ИВС) значительно изменяется интенсивность спектральных линий, поэтому в качестве аналитических пар спектральных линий используют гомологические спектральные линии.

Спектральные линии, которые с изменением параметров разряда изменяются одинаково, называют гомологическими спектральными линиями.

Относительная интенсивность (R) двух гомологических линий различных элементов не зависит от температуры, а определяется только их концентрацией c1 и с2.

где В - постоянная величина.

Линию сравнения выбирают так, чтобы она принадлежала спектру элемента, содержание которого в пробе не изменяется или зависит только от концентрации анализируемого элемента.

Линии анализируемого элемента и элемента сравнения (внутреннего стандарта) образуют аналитическую пару линий. Относительная интенсивность аналитической пары зависит только от концентрации анализируемого элемента.

4. ПРИНЦИПИАЛЬНАЯ СХЕМА ПРОВЕДЕНИЯ АЭСА

В основе спектрального анализа лежит изучение строения света, который излучается или поглощается анализируемым веществом. Рассмотрим схему эмиссионного спектрального анализа (рис. 1). Для того чтобы вещество излучало свет, необходимо передать ему дополнительную энергию. Атомы и молекулы анализируемого вещества переходят тогда в возбужденное состояние. Возвращаясь в обычное состояние, они отдают избыточную энергию в виде света. Характер света, излучаемого твердыми телами или жидкостями, обычно очень мало зависит от химического состава и поэтому его нельзя использовать для анализа. Совсем другой характер имеет излучение газов. Оно определяется составом анализируемой пробы. В связи с этим при эмиссионном анализе перед возбуждением вещества его необходимо испарить.

Рис 1. Принципиальная схема эмиссионного спектрального анализа:

1 -- источник света; 2 -- осветительный конденсор; 3 -- кювета для анализируемой пробы; 4 -- спектральный аппарат; 5 -- регистрация спектра; 6 -- определение длины волны спектральных линий или полос; 7 -- качественный анализ пробы с помощью таблиц и атласов; 8 -- определение интенсивности линий или полос;

9 -- количественный анализ пробы по градуировочному графику

Испарение и возбуждение осуществляют в источниках света, в которые вводится анализируемая проба. В качестве источников света используют высокотемпературное пламя или различные типы электрического разряда в газах: дугу, искру и др. Для получения электрического разряда с нужными характеристиками служат генераторы.

Высокая температура (тысячи и десятки тысяч градусов) в источниках света приводит к распаду молекул большинства веществ на атомы. Поэтому эмиссионные методы служат, как правило, для атомного анализа и только очень редко для молекулярного.

Излучение источника света складывается из излучения атомов всех элементов, присутствующих в пробе. Для анализа необходимо выделить излучение каждого элемента. Это осуществляют с помощью оптических приборов -- спектральных аппаратов, в которых световые лучи с разными длинами волн отделяются в пространстве друг от друга. Излучение источника света, разложенное по длинам волн, называется спектром.

Страницы: 1, 2, 3, 4



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.