на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Азотная кислота
p align="left">Влияние концентрации аммиака. Для окисления аммиака, как уже указывалось, применяют воздух. Поэтому концентрация NH3 в аммиачно-воздушной смеси определяется в том числе содержанием кислорода в воздухе. Согласно уравнению реакции 4NH3 + 5O2 = 4NO +6H2O для полного окисления 1 моль аммиака необходимо 1.25 моль кислорода. Исходя из этого, определим максимально возможное содержание аммиака в аммиачно-воздушной смеси (объемные доли,%).

Однако при соотношении O2: NH3 = 1,25 даже при атмосферном давлении выход оксида азота(II) не превышает 60-80%. Кроме того, при содержании в смеси 14.4% NH3, пришлось бы работать в области взрывоопасных концентраций. Нижний предел взрываемости аммиачно-воздушной смеси при атмосферном давления составляет 13,8% NH3.

Пределы взрываемости аммиачно-воздушных смесей показаны на рис.2. При увеличении соотношения O2: NH3 до 1,7, что соответствует содержанию аммиака в смеси 11,5%, выход NO возрастает. При дальнейшем увеличении соотношения O2: NH3 путем снижения концентрации аммиака выход оксида азота(II) меняется незначительно.

Таким образом, при использовании воздуха максимально возможной концентрацией аммиака в аммиачно-воздушной смеси, при которой достигается высокий выход NO, является 11,0-11,5%, и соотношение O2: NH3 = 1,7 при температурах 870 - 920 °С. На рис.3 представлена зависимость выхода NO от соотношения O2: NH3, в аммиачно-воздушной смеси. Для получения высокого выхода NO необходим примерно 30% -ный избыток кислорода сверх стехиометрического. Это связано с тем, что поверхность платинового катализатора должна быть постоянно насыщена кислородом (в отсутствие кислорода аммиак уже при 500 °С начинает разлагаться на азот и кислород).

Катализаторы. Превосходство платины по активности и селективности над всеми другими видами катализаторов было показано в 1902 г. Оствальдом. Характерно, что активность к реакции окисления аммиака проявляет подавляющее большинство металлов и их соединений, но высокий выход NO (выше 90%) обеспечивают очень немногие из них.

Обладая высокой активностью и селективностью, платина имеет низкую температуру зажигания ~200 °С, хорошую пластичность, тягучесть. Недостаток платины - ее быстрое разрушение при высоких температурах под воздействием больших скоростных потоков реагентов и катал изаторных ядов. Это приводит к потерям дорогостоящего катализатора и снижению выхода NO, что и явилось причиной поисков каталитически активных сплавов платины с другими металлами.

Проведенные промышленные испытания показали стабильную работу катализаторов из платины с добавками палладия, а также из тройного сплава Pt-Rh-Pd; это и послужило основанием для их промышленной реализации. Наибольшее распространение получили следующие катализаторы окисления аммиака (ГОСТ 3193-59):

Pt + 4% Pd + 3.5% Rh - для работы при атмосферном давлении и Pt + 7,5% Rh - при повышенном давлении.

Используемые для контактного окисления NH3 катализаторы изготавливают в виде сеток. Такая форма катализатора удобна в эксплуатации, связана с минимальными затратами металла, позволяет применять наиболее простои и удобный в эксплуатации тип контактного аппарата. В России применяются сетки из проволоки диаметром 0,09 мм (ГОСТ 3193-74), размер стороны ячейки 0,22 мм, число ячеек на 1 см длины - 32, на 1 см2 - 1024.

Платинородиевые (ГИАП-1) и платинородиевопалладиевые (сплав № 5) катализаторы весьма чувствительны к ряду примесей, которые содержатся в аммиаке и воздухе. К таким примесям относятся гидриды фосфора и мышьяка, фтор и его соединения, дихлорэтан, минеральные масла, ацетилен, диоксид серы, сероводород и др. Наиболее сильными ядами катализатора являются соединения серы и фтора. Примеси заметно снижают селективность катализатора, способствуют увеличению потерь платины. Для поддержания стабильной степени конверсии аммиака необходима тщательная очистка аммиачно-воздушной смеси и от механических примесей, особенно от оксидов железа и пыли железного катализатора синтеза аммиака. Пыль и оксиды железа, попадая на катализаторные сетки, засоряют их. уменьшая поверхность соприкосновения газов с поверхностью катализатора, и снижают степень окисления аммиака.

Чистоту исходных веществ в производстве азотной кислоты обеспечивают двумя путями - осуществлением дальнего забора воздуха и усовершенствованием систем очистки воздуха и аммиака.

В процессе реакции окисления аммиака поверхность платиноидных сеток сильно разрыхляется, эластичные нити сеток становятся хрупкими. При этом поверхность сетки увеличивается примерно в 30 раз Сначала это ведет к повышению каталитической активности катализатора, а затем к разрушению сеток. Практикой установлены следующие сроки работы катализаторных сеток: для работы под атмосферным давлением - до 14 мес. под давлением 0,73 МПа 8-9 мес.

Время контактирования. Реакция окисления аммиака происходит во внешнедиффузионной области, и поэтому увеличение объемной скорости оказывает положительное влияние на интенсивность процесса. С повышением, до определенного предела, объемной скорости поток газовой смеси становится более турбулентным, что увеличивает скорость диффузии исходных веществ к поверхности катализатора. Наряду с этим уменьшается время соприкосновения газовой смеси с горячими стенками аппаратов, что снижает возможность окисления аммиака до азота. С уменьшением времени контактирования выход NO увеличивается и при = 1·10-4 с достигает максимума (рис.4). При дальнейшем росте объемной скорости (уменьшении ) возможен проскок аммиака, который за контактной зоной превращается в элементарный азот при окислении кислородом. Не исключена также возможность образования азота при взаимодействии аммиака с оксидом азота(II).

В заводских условиях в зависимости от качества катализатора и точности соблюдения заданного технологического режима достигается значительная селективность процесса, и выход оксида азота(II) составляет 98%. При оптимальных условиях проведения процесса и правильном подборе конструкционных материалов побочные реакции не имеют существенного значения.

Окисление оксида азота (II)

Нитрозные газы, полученные при окислении аммиака, содержат оксид азота(II), азот, кислород и пары воды. При переработке нитрозных газов в азотную кислоту необходимо окислить оксид азота(II) до диоксида. Реакция окисления обратима,

2NO + O2 2NO2 + 124 кДж

протекает с уменьшением объема и сопровождается выделением теплоты. Следовательно, в соответствии с принципом Ле Шателье, снижение температуры и повышение давления способствуют смещению равновесия реакции вправо, т.е. в сторону образования NO2. Ниже приведены значения константы равновесия реакции окисления для различных температур.

t, °С

20

100

200

300

500

900

Kp

1.24·1013

1.82·107

7.41·103

45.5

8.5·10-2

1.51·10-4

Из которых видно, что при температурах до 100 °С равновесие реакции практически полностью сдвинуто в сторону образования NO2. При более высокой температуре равновесие смещается в левую сторону и при температуре выше 700 °С образования диоксида азота практически не происходит. В связи с этим в горячих нитрозных газах, выходящих из контактного аппарата, NO2 отсутствует, и для его получения газовую смесь необходимо охладить до температуры ниже 100 °С.

Как видно из уравнения для константы равновесия при повышении парциального давления кислорода парциальное давление оксида азота(IV) также увеличится так как от общего давления константа равновесия зависит очень мало.

Окисление оксида азота(II) - самая медленная стадия производства азотной кислоты. Скорость реакции окисления, определяющую скорость всего процесса, можно выразить следующим образом:

Онa сильно зависит от концентрации реагентов, давления и температуры. Применение в производстве азотной кислоты воздуха, обогащенного кислородом, или чистого кислорода позволяет получать нитрозные газы с повышенным содержанием оксида азота(II) и увеличить скорость окисления NO в NO2.

Реакция окисления NO в NO2 ускоряется при понижении температуры, а с повышением температуры замедляется почти до полного прекращения. Для объяснения этого явления предложено несколько гипотез, одна из которых, наиболее признанная, заключается в том, что окисление NO в NО2 идет через образование промежуточного продукта - димера оксида азота(II):

2NO (NO) 2 + Q

O2 + (NO) 2 2NO2 + Q

Образование димера оксида азота - процесс обратимый, протекающий с выделением теплоты. Следовательно, повышение температуры вызовет смещение равновесия этой реакции в левую сторону. При этом константа равновесия будет уменьшаться и равновесная концентрация димера в газовой смеси будет понижаться. Скорость дальнейшего окисления димера в диоксид зависит от

концентрации димера Таким образом, уменьшение скорости окисления оксида азота в диоксид с повышением температуры можно объяснить сильным снижением концентрации димера.

В установках, работающих под атмосферным давлением, окисляют оксид азота примерно на 92%, а оставшийся NO поглощают (совместно с NO2) щелочью, так как для окисления понадобилось бы много времени и соответственно большие объемы аппаратуры. Обычно переработку нитрозных газов в разбавленную кислоту проводят при температурах 10-50 °С, при которых часть диоксида азота полимеризуется в N2O4:

2NO2 N2O4 + 57 кДж

Зависимость степени полимеризации NO2 от температуры характеризуется следующими данными:

Температура, °С

200

100

70

30

0

-20

Степень поли-, меризации%

0.7

2.5

38

77.8

89

92

Скорость полимеризации NO2 очень высока, поэтому в любой момент времени числовое значение отношения NO2: N2O4 определяется условиями равновесия, которое устанавливается практически мгновенно. Так как реакция протекает с уменьшением объема, то увеличение давления способствует образованию N2O4.

Нитрозные газы, поступающие на абсорбцию, содержат NO2;. N2O4, NO, N2O, N2, N2O3 пары воды.

Абсорбция диоксида азота

Все оксиды азота, за исключением NO, взаимодействуют с водой с образованием азотной кислоты. Поглощение оксидов азота водой связано с растворением в ней NO2, N2O4, N2O3 и с образованием азотной и азотистой кислот. Азотистая кислота является малоустойчивым соединением и распадается на азотную кислоту, оксид азота(II) и воду. Абсорбция протекает по схеме

2NO2 + H2O HNO3 + HNO2 + 116 кДж(7)

3HNO2 HNO3 + 2NO + H2O - 76 кДж(8)

Суммарно взаимодействие NO2 с водой можно представить уравнением реакции

3NO2 + H2O 2HNO3 + NO + 136 кДж(9)

которое является исходным для всех расчетов процесса абсорбции. Из него следует, что из 3 моль NO2 образуется 2 моль НNO3 и 1 моль NO, который снова окисляется до NO2:

2NO + O2 2NO2(10)

Механизм образования разбавленной азотной кислоты можно представить следующим образом. В газовой фазе NO2 и N2O4 постоянно находятся в состоянии химического равновесия и их перенос на поверхность соприкасающихся фаз совершается в соответствии с законами молекулярной диффузии газов. В пограничном слое газ - жидкость происходит переход NO2 в жидкую фазу. Затем после растворения NO2 происходит химическая реакция (7), которая по сравнению с процессом диффузии протекает относительно быстро.

Далее в жидкой фазе происходит сравнительно медленное разложение азотистой кислоты по реакции (8). Образующийся NO частично окисляется в растворе кислородом, но его большая часть взаимодействует с кислородом уже в газовой фазе по реакции (10). Одновременно с абсорбцией и протеканием химических реакции в растворе в газовой фазе частично происходят те же реакции, приводящие к образованию азотной кислоты. Медленным процессом, определяющим скорость поглощения оксидов азота, является диффузия их в жидкую фазу. При взаимодействии паров воды и диоксида азота в газовой фазе происходит образование кислотного тумана, вследствие этого создается дополнительное сопротивления при поглощении оксидов азота.

Степень поглощения диоксида азота водными растворами азотной кислоты определяется такими факторами, как температура, давление, концентрация кислоты. При понижении температуры и концентрации кислоты и повышении давления степень превращения диоксида азота растет. При концентрации азотной кислоты выше 65% поглощение почти прекращается. Концентрация получаемой азотной кислоты определяется условиями равновесия NO2 над кислотой.

Следует отметить, что степень окисления NO в NO2 зависит от свободного объема, а количество поглощаемых оксидов азота - от поверхности соприкосновения газа с жидкостью. Поэтому одно из основных требований, предъявляемое к абсорбционной аппаратуре, - создание максимального свободного объема при одновременно сильно развитой поверхности поглощения.

Страницы: 1, 2, 3



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.