на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Естественнонаучные знания о веществе
p align="left">> Процесс образования молекул из атомов называется химической реакцией.

Периодическая система элементов определяет для каждого элемента:

¦ тип и заряд заряженной частицы (иона);

¦ типы химических соединений, в которые могут вступать атомы данного элемента, то есть, по сути, химические формулы молекул;

¦ типы химических связей, которые могут реализоваться в таких молекулах;

¦ типы химических реакций, в которые может вступать данный элемент.

Молекулы могут содержать атомы только одного элемента, в этом случае такие вещества называются простыми. Многочисленные примеры - существование чистых металлов (особенно химически инертных драгоценных металлов - золота, платины), инертных газов - неона, радона и др. У некоторых простых веществ молекулы состоят из двух и более одинаковых атомов - это так называемые двухатомные газы, например кислородО2, галогены - газы фтор F2 и хлор Cl2, жидкость бром Br2, твердое вещество йод J2. Молекула известного газа озона содержит три атома кислорода по формуле О3, а молекула белого фосфора - четыре атома фосфора Р4.

Вещества, молекулы которых состоят из атомов разных элементов, называются сложными веществами, или химическими соединениями, например: соединения разных элементов с кислородом называются оксидами, с фтором - фторидами, с хлором - хлоридами. Все химические соединения объединены в классы, и названия соединений разных классов определяется согласно международным стандартам номенклатуры химических соединений ИЮПАК.

Традиционно химические соединения подразделяют на неорганические - соединения всех элементов Периодической системы, и органические - соединения углерода и некоторых других элементов, в которых атомы углерода соединены между собой в цепи (соответственно оформились фундаментальные направления химической науки - неорганическая и органическая химия). Всего химических соединений на настоящий момент известно несколько миллионов, и их количество постоянно растет за счет синтеза новых органических соединений.

В настоящее время известно 110 элементов, а число образуемых ими простых веществ - около 400. Такое различие объясняется способностью некоторых элементов существовать в виде различных простых веществ, отличающихся как по химическим, так и по физическим свойствам. Это явление получило название аллотропии, а сами различные вещества - аллотропными модификациями. Свойством образовывать аллотропные модификации обладают как простые вещества, например рассмотренные выше соединения двухатомный кислород и трехатомный озон (не менее известный пример - аллотропия углерода С: уголь, алмаз, графит, шунгит - химическая формула всех перечисленных соединений одна и та же), так и сложные соединения, например многочисленные аллотропные формы оксида кремния (речной песок, минерал кварц и др.) и оксида алюминия (глинозем и корунд).

4. Химическая реакция, ее скорость, кинетика и катализ, биокатализаторы

Для установления состава химических соединений очень важен закон постоянства их состава. Положения этого закона позволили химикам отделять настоящие химические соединения от простых смесей. Впервые в истории химии этот закон был сформулирован французским химиком Ж. Прустом в начале XIX в.:

> Любое индивидуальное химическое соединение обладает строго определенным неизменным составом, прочным притяжением составных частей и тем самым отличается от смесей.

Теоретически закон постоянства состава обосновал английский естествоиспытатель Д. Дальтон в своем знаменитом законе кратных отношений: «соединения состоят из атомов двух или нескольких соединений, образующих определенные сочетания друг с другом». В его честь все химические соединения постоянного состава (а их подавляющее большинство среди веществ) называют дальтонидами.

Закон постоянства состава вещества использовал и Д. И. Менделеев при разработке своей периодической системы - постоянство состава соединений, которые может образовывать данный элемент, следует из его положения в периодической таблице Менделеева. Представление о составе вещества - одно из концептуальных понятий для химии как естественной науки. Постоянство состава химических соединений обусловлено физической природой химических связей, объединяющих атомы в одну квантово-механическую систему - молекулу.

Необходимость выработки строгих научных принципов относительно состава вещества позволила химикам успешно развить строгое научное понятие химической реакции как процесса образования новых химических соединений. В химической реакции участвуют исходные вещества, которые реагируют друг с другом и с течением времени превращаются в новые вещества, называемые продуктами реакции. Из закона постоянства состава вещества следует постоянство не только состава молекул продуктов реакции, но и постоянство количественных соотношений (массовых долей) исходных веществ.

> Стехиометрия - раздел химии, в котором рассматриваются массовые или объемные отношения между реагирующими веществами. Законы стехиометрии так же непреложны, как и любые другие естественнонаучные законы; кроме того, их знание очень полезно для прикладной химии, потому что позволяет количественно рассчитать выход химической реакции и необходимое количество исходных веществ.

Процесс получения новых химических соединений с учетом сте-хиометрических соотношений обычно записывается в виде уравнения химической реакции, например:

6HCL + 2HNO3 = 3CL2 + 2NO + 4H2O,

где

¦ химические формулы слева от знака равенства обозначают исходные вещества;

¦ химические формулы справа от знака равенства обозначают продукты реакции;

¦ цифры перед формулами химических соединений являются так называемыми стехиометрическими коэффициентами; они раскрывают массовые (или объемные) соотношения веществ.

В уравнении химической реакции нашел свое отражение еще один фундаментальный закон естествознания - закон сохранения вещества, открытый нашим соотечественником М. В. Ломоносовым и независимо от него - французом А. Л. Лавуазье. Именно в соответствии с этим законом и получается математическое выражение - уравнение: масса данного элемента слева от знака равенства должна быть равна массе этого же элемента справа от знака равенства, а стехиометрические коэффициенты уравнивают (не только математический, но и химический термин!) данную реакцию.

Проникновение математических понятий, выражений, терминов (уравнения, коэффициенты) в химию, смешение терминологий означает, что на важном историческом этапе формирования химии как науки (XVIII-XIX вв.) она развивалась в соответствии с научной парадигмой того времени - классической механикой. Применительно к химии эта парадигма могла бы быть выражена следующим образом: любой закон природы можно представить в виде математического соотношения, записываемого с участием химических формул.

Еще один интересный случай проникновения классического ньютоновского подхода в химию - понятие о скорости химической реакции. Пытаясь получить новые химические соединения, ученые-химики разных эпох неоднократно отмечали тот факт, что некоторые вещества реагируют друг с другом мгновенно, часто со взрывом, а другие - медленно, в течение нескольких часов (суток). Скорости многих химических процессов были установлены эмпирическим путем. И для вычисления скорости химических реакций было использовано ньютоновское представление о времени как о не зависящей от свойств вещества и пространства простой длительности. Процесс химической реакции можно рассматривать как процесс изменения концентраций начальных и конечных продуктов реакции, и, согласно классической механике, для любого процесса изменения (движения) во времени всегда можно рассчитать скорость этого изменения.

Современные квантовые представления о химических процессах рассматривают химическую реакцию как перераспределение электронов между статистически вероятными энергетическими уровнями участвующих молекул, создание межмолекулярных промежуточных реакционных комплексов и получение новых продуктов как энергетически выгодных состояний молекул. В рамках этих представлений классическая скорость реакций не имеет смысла, так как каждое новое энергетическое состояние рассматривается в рамках пространственно-временного континуума и перебор энергетических состояний продолжается до достижения наиболее энергетически выгодного. Тем не менее, классические представления о химических процессах активно используются в современной химии, особенно в прикладных областях химии и в химических науках, лежащих «на стыке» с биологией, - биохимии, молекулярной биологии и др.

Закономерным этапом применения знаний об условиях протекания химических процессов стало развитие науки о том, как можно оказывать на них влияние и ими управлять. Такая наука получила название химической кинетики, в котором также нашла отражение классическая парадигма, ведь кинетика - это наука о движении. Но в классической кинетике скорость - векторная величина, то есть имеет направление. Точно так же и в химической кинетике имеет значение направление химической реакции - различают реакцию прямую, то есть такую, в результате которой из исходных веществ получаются продукты реакции, и реакцию обратную, при которой происходит разложение продуктов с получением исходных веществ. Так в химическую кинетику было введено понятие о химическом равновесии - состоянии, когда скорости прямой и обратной реакции равны между собой.

В рамках химической кинетики было сделано немало полезных открытий, которые показывают, как можно увеличивать скорость химических процессов за счет подбора условий - повышения температуры реакции, давления (если реакция протекает в газовой фазе), как можно сдвинуть химическое равновесие в сторону получения полезных продуктов реакции, не содержащих остатков непрореагировавших исходных продуктов, и т. д.

Эпохальным стало открытие веществ, которые при добавлении к реакционной смеси способны увеличить скорость реакции, при этом оставаясь неизменными (не меняя своего состава). Эти вещества получили название катализаторов, то есть ускорителей, а их применение - катализ. Сейчас сложно даже перечислить все химические промышленные процессы, где применяются катализаторы, - столь велико их число, особенно в органической химии. Известные примеры промышленного катализа - каталитический крекинг нефтепродуктов с получением углеводородов, применяемых в качества топлива (бензины, дизельное топлива и т. д.), получение твердого заменителя сливочного масла - маргарина - из жидких растительных масел и т. д.

Интересно, что наряду с огромным количеством реализованных учеными ускоряемых искусственными катализаторами химических процессов существуют природные катализаторы и природные каталитические процессы. Пример природного катализа - процесс коррозии металлического железа, «ржавение», то есть его окисление в природе с образованием оксидов - ржавчины, происходит под действием катализатора воды. В связи с этим интересен факт применения веществ, замедляющих некоторые нежелательные химические процессы, например тот же процесс коррозии металлического железа. Эти вещества называются ингибиторы, то есть замедлители. Легирующие добавки к сталям для защиты их от коррозии (получение нержавеющих сталей) - вот пример применения ингибиторов в промышленности. Как и катализаторы, ингибиторы бывают природного происхождения, например ингибиторы гниения - натуральные консерванты, которые продуцируются некоторыми растениями.

Катализаторы и ингибиторы играют большую роль в биологических процессах. Известные всем ферменты - биокатализаторы, то есть вещества, которые ускоряют биохимические процессы внутри организмов живых существ, причем живые существа самостоятельно синтезируют эти ферменты в различных органах и тканях. Ферменты управляют всеми процессами метаболизма у всех растений и животных, причем чем выше уровень организма, тем большее количество ферментов используется в нем. На настоящий момент неизвестно даже приблизительно общее количество ферментов человеческого организма, оценочное число - несколько тысяч.

Интересны факты использования жизненно важных ферментов, которые не может синтезировать человеческий организм, и поэтому исходные вещества для внутреннего синтеза ферментов - так называемые коферменты - он, как гетеротрофный организм, получает извне от растений и животных. Это всем известные витамины, «вещества жизни», необходимые человеку на протяжении всего его жизненного цикла. Внутри человеческого организма они трансформируются в ферменты. Согласно представлениям современной эволюционной химии, роль природных катализаторов очень важна в процессах эволюции неживой и живой материи.

5. Взаимосвязь химического строения и структуры неорганических и органических соединений

Изомерия и ее виды

Для описания химического соединения часто бывает важным знание не только его состава, то есть записи его химической формулы, но и так называемой структуры. Говоря о структуре вещества, химики всегда имеют в виду его молекулярное строение. Под термином «структура» подразумевается расположение в пространстве атомов при образовании молекулы вещества. Для понимания этого концептуального для химии понятия важно рассмотреть молекулы с квантовых позиций.

Согласно современным представлениям, структура молекул - это пространственная и энергетическая упорядоченность квантово-механической системы, состоящей из атомных ядер и электронов. Суть дела в том, что электроны, реализуя статистический набор состояний вблизи собственного атомного ядра при образовании химической связи, вступают во взаимодействие с электронами и ядрами других атомов и некоторые до этого статистически доступные «места» в пространстве занять не могут. Особенности фундаментального электромагнитного взаимодействия нескольких заряженных объектов микромира приводят к тому, что атомы в молекулах оказываются «локализованы» в строго определенных «местах», положение в пространстве которых можно рассчитать с помощью математического аппарата квантовой химии.

В современной химии разработана система наглядного изображения пространственных структур молекул, которая очень полезна как в процессе познания природы химических соединений, особенно в органической химии, так и для решения практических задач химического синтеза этих соединений. Начало изучению структуры органических соединений было положено в теории строения органических соединений, разработанной великим русским химиком А. М. Бутлеровым (1860 г.). Изучением пространственных структур химических соединений занимается современная наука стереохимия, являющаяся подразделом органической химии.

С понятием «пространственная структура органических соединений» неразрывно связано одно из интереснейших явлений природы нашей планеты, аналогичное явлениям радиоактивной изотопии элементов и аллотропии простых и сложных неорганических веществ. Как и в упомянутых случаях, одной химической формуле органического соединения, то есть одному составу вещества, соответствуют разные соединения с разными физическими или химическими свойствами, и основное различие между ними заключено в разной пространственной структуре молекул этих соединений. Это явление называется изомерией органических соединений. Изомеры органических соединений, несмотря на то что имеют одинаковые химические формулы, называются по-разному, и их названия также соответствуют строгой номенклатуре химических соединений. В стереохимии рассматривается изомерия разных видов - изомерия предельных углеводородов, цистранс-изомерия непредельных углеводородов, таутомерия кислородсодержащих органических соединений (кетонов и альдегидов), оптическая изомерия и диастереомерия сложных органических соединений.

А что же неорганические соединения? Есть ли в этом классе химических соединений проблемы, связанные с пространственной структурой молекул? Да, есть. Неорганические соединения (не все) в твердом состоянии способны образовывать надмолекулярные комплексы повторяющегося состава и сложной объемной пространственной структуры. Они называются кристаллами. А структура кристаллов, характеризующаяся высокой степенью упорядоченности, называется кристаллической структурой, или кристаллической решеткой.

6. Эволюционная химия - отбор химических элементов во Вселенной

В XX в. в свете общих эволюционных представлений в естествознании развивается новая наука - эволюционная химия, наука о самоорганизации и саморазвитии химических систем. В рамках эволюционной химии изучаются процессы самопроизвольного синтеза новых химических соединений, являющихся более сложными и высокоорганизованными продуктами по сравнению с исходными веществами.

Начало этой науки было положено при разработке теории биохимической эволюции, объясняющей происхождение жизни на Земле в результате процессов, подчиняющихся физическим и химическим законам. Первой стадией биохимической эволюции считается химическая эволюция, или абиогенез, которая, согласно этой теории, протекала в три этапа. Первый этап - синтез низкомолекулярных органических соединений из газов первичной атмосферы; второй этап - полимеризации мономеров с образованием цепей белков и нуклеиновых кислот; третий этап - образование фазово-обособленных систем органических веществ, отделенных от внешней среды мембранами. В процессе развития нашей планеты происходил отбор химических элементов в биотических и абиотических системах.

Основу живых систем составляют только 6 элементов, получивших название органогенов: углерод, водород, кислород, азот, фосфор, сера. Их общая весовая доля в организме составляет более 97 %. За ними следуют 11 элементов, которые принимают участие в построении многих физиологически важных компонентов биосистем: натрий, калий, кальций, магний, железо, кремний, алюминий, хлор, медь, цинк, кобальт. Их весовая доля в организме - 1,6 %. Есть еще 20 элементов, участвующих в построении и функционировании отдельных специфических биосистем, доля которых составляет 1 %. Участие всех остальных элементов в построении биосистем практически не зафиксировано. И в абиотической среде есть свидетельства об отборе элементов. Более 99 % всех природных соединений содержат те же 17 элементов, на долю всех остальных приходится менее 1 % соединений.

Если говорить о химической картине мира в целом, учитывая как природные, так и синтетические продукты, то оказывается, что в настоящее время известно около 8 млн химических соединений. Из них 96 % - органические соединения, а на долю неорганических соединений (4 %) приходится всего около 300 тыс. простых и сложных веществ. Большую часть вещества во Вселенной составляют водород и гелий. Более тяжелые элементы существуют во Вселенной в очень малых количествах: например, наша звезда - Солнце - содержит не более 2 % тяжелых элементов.

7. Концептуальные системы химических знаний

Подводя итоги данного раздела, посвященного концептуальным основам современной химии, мы можем выделить в развитии химии как естественной науки четыре концептуальных этапа, причем каждый новый возникал на основе предыдущего и включал его в себя в преобразованном виде.

1. Учение о составе вещества связано с исследованием различных свойств веществ в зависимости от их химического состава, понятием химического элемента и химического соединения.

2. Структурная химия - положение о том, что свойства веществ обусловливаются не только составом, но и структурой молекул.

3. Учение о химических процессах связано с исследованием механизмов и условий протекания химических процессов, с понятием о катализе.

4. Эволюционная химия изучает процессы самоорганизации химических систем с позиций представлений о всеобщем эволюционном процессе во Вселенной и отборе химических элементов.

Список литературы:

· Азимов А. Краткая история биологии. От алхимии до генетики: Пер. с англ. Л. А. Игоревского. - М.: ЗАО «Издательство Центрполиграф», 2002

· Биология: Энциклопедия / Под ред. М. С. Гилярова. - М.: Большая Российская энциклопедия, 2003.

· Горелов А. А. Концепции современного естествознания. - М., 2003.

· Капке В. Б. Концепция современного естествознания. - М.: Логос, 2002.

Страницы: 1, 2



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.