на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Физико-химические основы формования волокон из растворов полимеров

Физико-химические основы формования волокон из растворов полимеров

29

«Физико-химические основы формования волокон из растворов полимеров»

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ

1. ФОРМОВАНИЕ ВОЛОКОН ИЗ РАСТВОРОВ ПОЛИМЕРОВ

1.1 Образование жидкой нити

2. ФИКСАЦИЯ НИТИ В ПРОЦЕССЕ ФОРМОВАНИЯ

2.1 Общие сведения об отверждении нити

2.2 Фиксация нити при испарении растворителя

2.3 Диффузионные процессы при формовании волокон

2.4. Фиксация нити при застудневании раствора полимера

2.5 Структурные особенности искусственных волокон

3. Структурные особенности искусственных волокон

3.1 Ориентационное вытягивание волокон

3.2 Сушка волокон

ЛИТЕРАТУРА

ВВЕДЕНИЕ

Переработка полимеров в изделия приобрела в настоящее время такое большое практическое значение, что теоретические основы ее превратились в самостоятельный, быстро развивающийся раздел науки о полимерах. Наибольший удельный вес при этом занимают вопросы формования объемных изделий, т. е. изделий, размеры которых в трех взаимно перпендикулярных направлениях сопоставимы между собой. К таким изделиям относятся детали машин и приборов, заготовки для изготовления этих деталей, различные предметы техники и быта, емкости и т. п. Формование объемных изделий, особенно тех, которые должны сохранить после формования строгие и точные геометрические соотношения, возможно только при условии отсутствия в этом процессе диффузионного отделения компонентов исходной формовочной смеси. Дело не только в том, что диффузионное отделение вспомогательных компонентов (облегчающих формование, но отсутствующих в готовом изделии) резко замедляет технологический процесс. Главное заключается в том, что из-за наличия временных градиентов концентрации удаляемого компонента (например, растворителя) оказываются неравноценными условия протекания релаксационных процессов в отдельных -- в частности во внешних и внутренних -- областях формуемого изделия. В результате этого создаются локальные внутренние напряжения, искажающие размерные соотношения и форму готового изделия.

Условию формования без диффузионного отделения вспомогательных компонентов отвечают такие способы переработки термопластов, при которых переход в вязкотекучее (пластичное) состояние, необходимое для придания формы полимерному материалу, достигается путем его нагревания, а фиксация формы -- охлаждением, причем летучие компоненты в этих переходах практически отсутствуют.

Из термопластичных полимеров вырабатывают не только объемные изделия, но и пленки, и волокна. Переработка в пленки и волокна также основана на процессе расплавления полимера, придания ему желаемой геометрической формы и фиксации этой формы путем охлаждения [1].

Моя курсовая работа посвящена изложению основных закономерностей формования волокон из растворов полимеров.

1. ФОРМОВАНИЕ ВОЛОКОН ИЗ РАСТВОРОВ ПОЛИМЕРОВ

1.1 Образование жидкой нити

Для получения волокнистого материала раствор полимера продавливается через тонкие отверстия. Вытекающая из отверстия струйка раствора подвергается отверждению путем испарения растворителя или путем застудневания.

Рассмотрение механизма образования непрерывной жидкой нити можно начать с изучения условий ее стабильности. Ограниченный объем жидкости, если на него не действует внешнее силовое поле (в том числе и гравитационное), принимает форму шара, поскольку на границе раздела жидкость -- окружающая среда существует свободная поверхностная энергия (поверхностное натяжение), значение которой стремиться по законам термодинамики к минимуму. Тело любой другой формы при том же объеме жидкости будет иметь большую поверхность и соответственно большую поверхностную энергию.

Если одноосно деформировать шарообразную частицу жидкости, то согласно теоретическим расчетам она распадается на две капли при достижении длины, превышающей диаметр. Таким образом, в статическом состоянии невозможно существование изолированного объема жидкости в виде нити (под нитью подразумевается такая геометрическая форма тела, у которой один из размеров -- длина -- во много раз превосходит размеры в двух других направлениях или диаметр для тел круглого поперечного сечения).

Для изолированного объема жидкости равновесной формой при отсутствии внешних деформирующих усилий является шар, а для неизолированного объема, соприкасающегося с двумя разделенными плоскостями, такой формой с минимальной поверхностью оказывается цилиндр (рис. 1). Отступления от цилиндрической формы будут наблюдаться только непосредственно у контактных поверхностей за счет отклонения угла смачивания от 90°.

Поскольку интересен вопрос о формовании изделий из растворов полимеров, т. е. о придании полимерному материалу определенной геометрической формы, то имеет смысл более подробно остановиться на

условиях, обеспечивающих получение заданного размера изделия. Хотя основное внимание в данном разделе оделено формованию нитей искусственных волокон, следует сделать несколько замечаний и о формовании сферических полимерных частиц, тем более, что в некоторых специальных случаях это может представить практический интерес.

Если из тонкого капилляра медленно вытекает жидкость, то в силу существования поверхностного натяжения она собирается в каплю. Достигнув определенного размера и соответственно веса,, капля под действием силы тяжести преодолевает поверхностное натяжение и отрывается.

Оба обстоятельства -- разрыв сплошной нити и малые скорости этого разрыва в случае вязких сред играют важную роль при анализе формования искусственных волокон, и поэтому имеет смысл остановиться на них подробнее.

Как указывалось выше, стабильность той или иной геометрической формы заданного объема жидкости связана с поверхностным натяжением на границе раздела между этой жидкостью и окружающей средой. Переход от дискретной сферической формы (капли) к непрерывной цилиндрической нити связан с приданием системе дополнительной энергии (например, кинетической). Обратный переход от непрерывной нити к дискретным сферическим каплям требует преодоления энергетического барьера, величина которого определяется произведением вновь образованной поверхности на поверхностную энергию.

Чем ниже межфазное натяжение, тем меньше этот барьер, и, с этой точки зрения, легче должен происходить разрыв нити. Однако скорость перехода от цилиндра к сфере снижается, так как она зависит от величины межфазного натяжения. Когда межфазное натяжение приближается к нулю (в случае смешивающихся жидкостей), исследуемый объем жидкости принимает сферическую форму крайне медленно, и жидкость даже при небольших скоростях имеет вид вытянутых (нитевидных) образований, что проще всего наблюдать при слабом перемешивании хорошо растворяющихся интенсивно окрашенных веществ в воде.

Например, при растворении кристалликов перманганата калия в воде над ними возникают окрашенные струйки, которые из-за малого межфазного натяжения долго сохраняют нитевидную форму.

Если поверхностное натяжение не бесконечно мало, а имеет значительную величину, то обрыв под влиянием случайных внешних воздействий (возмущений) может произойти сравнительно легко.

Механизм разрыва стационарной жидкой струи вязкой жидкости заключается в том, что по какой-либо внешней причине возникает осесимметричная капиллярная волна, распространяющаяся вдоль оси струи. По мере удаления от отверстия амплитуда ее возрастает, и, когда величина амплитуды достигает значения радиуса струи, происходит обрыв последней.

Скорость, необходимая для формования нити из воды, лежит за пределами сверхзвуковых скоростей и не реальна. При столь высоких скоростях возникают сложные гидро- и аэродинамические явления. Растворы полимеров могут быть сформованы в виде нити даже при очень малых скоростях.

Из этих ориентировочных данных следует, что решающим показателем для оценки способности полимера к переработке в волокно является вязкость его растворов. Здесь уместно сделать замечание относительно встречающихся иногда понятий «волокнообразующий полимер» и «способность полимера к волокнообразованию». Эти не очень строгие понятия являются, кроме того, комплексными. С одной стороны, подразумеваются определенные минимальные требования к физическим *свойствам полученного из полимера волокна и особенно к механическим свойствам (минимальная прочность, эластичность и т. п.), а с другой стороны, -- способность полимера к переработке в нити, т. е. к образованию жидкой нити и к фиксации ее в виде отвержденного материала.

Если первое требование -- определенные механические свойства волокна -- связано в первую очередь и непосредственно с молекулярным весом полимера (минимальная степень полимеризации, начиная с которой проявляются свойства вещества как полимерного материала), то второе требование --способность к формованию -- связано с молекулярным весом лишь косвенно, а определяется в основном возможностями перевода полимера в вязкотекучее состояние и вязкими свойствами образовавшейся системы.

Когда речь идет о формовании из расплава, то лимитирующим фактором оказывается очень высокая вязкость расплава, и поэтому о нижнем пределе ее, обеспечивающем стабильность жидкой нити, говорить не приходится. При формовании же волокон из растворов полимеров важно обеспечить минимальную вязкость, как это следует из приводившегося выше расчета для формования волокна из раствора ацетата целлюлозы. Минимальная вязкость достигается очень легко за счет понижения содержания полимера в растворе.

С образованием жидкой нити связана еще одна особенность в поведении растворов полимеров, на которой следует кратко остановиться. Речь идет об эффекте расширения струи раствора полимера после выхода ее из тонкого отверстия фильеры. Этот эффект в последнее время подвергся подробному изучению, но окончательно механизм его возникновения еще не определен [1-3].

2. ФИКСАЦИЯ НИТИ В ПРОЦЕССЕ ФОРМОВАНИЯ

2.1 Общие сведения об отверждении нити

После преобразования раствора полимера в жидкую нить эта нить должна быть отверждена, чтобы путем дальнейших операций можно было полностью удалить *остаток растворителей и других низкомолекулярных веществ, а также придать выделенному из раствора полимеру необходимую физическую структуру и соответственно те или иные особенности свойств.

Процесс отверждения сводится к тому, что раствор полимера переводится в нетекучее состояние. Это может быть достигнуто в принципе тремя путями: 1) понижением температуры раствора, 2) испарением летучего растворителя и 3) застудневанием раствора. Во всех трех методах фиксация формы обусловлена повышением эффективной вязкости системы до такого предела, который обеспечивает при заданной нагрузке на формующуюся нить низкую необратимую деформацию (течение). Например, если необратимая относительная деформация нити составляет несколько процентов в секунду, то можно считать, что при заданных нагрузках произошла фиксация нити.

2.2 Фиксация нити при испарении растворителя

Если на диаграмме состав -- температура нанести кривую изовязкости, задав определенное значение вязкости, например то, которое отвечает указанному выше условию низкой необратимой деформации, то для температуры формования этому значению вязкости будет соответствовать содержание полимера в растворе Х1. Чтобы достичь такого состава, отправляясь от исходной концентрации х0, необходимо испарить из раствора (из формующейся нити) часть растворителя, которая определяется как разность его начального содержания (1--ха) и содержания в точке потери раствором текучести (1--Х1), равная (xi--х0) (рис.2).

Пусть содержание полимера в исходном растворе составляет, например, 0,25 весовой доли, а вязкость в пределах 108--109 достигается при концентрировании раствора до 0,75 весовых долей полимера; тогда из формующейся нити необходимо испарить две трети от начального количества растворителя.

Если формование проводить при более высокой температуре, например, при Т2, то соответственно повышается и та концентрация полимера х% при которой достигается вязкость системы, обеспечивающая критическую величину необратимой деформации.

На рис. 3 приведена технологическая схема метода сухого формования. Раствор полимера с концентрацией, которая определяется величинами вязкости 800-- 1500 и составляет обычно 20--25%, продавливают через фильеру с большим числом отверстий (размер отверстий 0,05--0,08 мм). Проходя через обогреваемую шахту высотой от 2 до 6 м (в зависимости от скорости формования нити и условий испарения растворителя), нить теряет большую часть растворителя и отверждается. Далее следует намотка и последующая обработка нити.

Рис. 3. Технологическая схема формования волокон из растворов полимера по сухому методу: / -- растворяющее устройство; 2 -- промежуточная емкость; 3 -- фильтр;

Страницы: 1, 2, 3



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.