на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Флотационные методы обогащения ртути

Флотационные методы обогащения ртути

Введение

Проектом представляется технология переработки ртутно-молибденовой руды. Так как в природе данного типа руды не существует то для обогащения таких компонентов как ртуть, которая представлена киноварью и молибденом, который представлен повеллитом а также для получения концентратов необходимого качества возможно применение только флотационный метод обогащения. Преимуществами флотационных методов обогащения являются: возможность комплексного использования сырья, создание малоотходных технологий, возможность обогащения труднообогатимых и забалансовых руд, а также техногенных образований с низким содержанием полезного ископаемого, возможность обогащения тонких и сверхтонких частиц (шламов крупностью до 5 мКм) и многое другое.

Универсальность флотации объясняется невозможностью существования в природе двух одинаковых минералов с одинаковыми физическими и химическими свойствами и в соответствии с этим, применяются флотационные методы обогащения, которые главным образом зависят от разности в свойствах разделяемых минералов.

Флотационные методы обогащения очень широко применяются не только в рудной промышленности. Известно применение флотации: при разделении хлористого аммония и бикарбоната натрия в производстве соды; отделение криолита от частиц угля и алюминия; очистке воды и воздуха от бактерий и твёрдых частиц; выделении каучука из растительных продуктов; разделение различных видов бактерий друг от друга (например, желудочных бактерий и палочек Коха); очистке виноградного сока и растворов свекловичного и тростникового сахара от твёрдых примесей; разделение друг от друга проросших и непроросших семян и т.д.

Получаемыми концентратами являются повеллитовый (CaMoO4) и киноварный (HgS). Установленные в России кондиции на молибденовые концентраты флотации предусматривают содержание в них молибдена не ниже 45%. Промродукты обогатительных фабрик и некондиционные по содержанию вредных примесей, молибденовые концентраты подвергаются гидрометаллургической обработке. Молибденовые концентраты полученные гидрометаллургическим способом в виде трисульфида молибдена, должны содержать после их обжига при температуре 450 ч 500 0С не менее 53% молибдена. При данной обработке также может получиться молибдат кальция, в котором содержание молибдена должно быть не менее 40%. Молибдат кальция используют в производстве легированных сталей.

В ртутных рудах ведущим минералом является киноварь (86,2% Hg). При содержании в руде 0,25% ртути и более руда может быть направлена в металлургический передел без обогащения. Область применения ртути очень широкая: научные цели, металлургия, медицина и другие напрвления.

1. Обоснование схемы флотации

Руда ртутно-молибденовая представлена такими минералами как: киноварь, повелит, пирит, пирротин, гипс. Далее приводятся физические и химические свойства минералов, а также область их залегания и характер вкрапленности.

1.1 Пирротин (магнитный пирит) Fe1-xS

Данный минерал обладает: твёрдостью 4, плотностью 4,58 - 4,65, бронзо-коричневого цвета с металлическим блеском, магнитен с различной интенсивностью - чем больше количество железа, тем менее магнитен, непрозрачен. Структура пирротина является сложной производной от структуры типа NiAs. Узнаётся по массивному сложению, бронзоватому цвету и магнитности. При нагревании на угле даёт запах двуокиси серы и становится сильно магнитным. Пирротин обычно связан с основными извержёнными породами, особенно с норитами. Он встречается в них в виде вкрапленности или в виде крупных масс в ассоциации с пентлантидом, халькопиритом, и другими сульфидами. Пирротин также находят в контактово-метаморфических жильных месторождениях и в пегматитах. Добывается в основном ради связанных с ним Ni, Cu и Pt, кроме того является источником S и Fe.

1.2 Пирит FeS2

Минерал обладает: твёрдостью 6 - 6,5, плотностью 5,02, бледного латунно-жёлтого цвета с очень ярким металлическим блеском, непрозрачен, парамагнитен. Состоит из 46,6% Fe и 53,4% S. Может содержать небольшие количества Ni и Co. Некоторые анализы показывают значительные количества Ni. Пирит легко превращается в окислы железа, обычно в лимонит. Очень распространены псевдоморфозы лимонита по пириту. Пирит самый обычный и распространённый из сульфидных минералов. Он образуется как при высоких так и при низких температурах, но самые крупные его скопления образуются при высоких температурах. Встречается, как продукт магматической сегрегации, как акцессорный минерал в извержённых породах в контактово-метаморфических образованиях и гидротермальных жилах. Пирит ассоциирует со многими минералами, но чаще всего с халькопиритом CuFeS2, сфалеритом ZnS, и галенитом PbS. Часто разрабатывается ради золота и меди, ассоциирующих с ним. Главным образом используется как источник серы для получения серной кислоты и железного купороса. Железный купорос применяют в красильном деле, для приготовления чернил, как пищевой консервант и дезинфицирующее средство.

1.3 Киноварь HgS

Этот минерал обладает: твёрдостью 2,5, плотностью 8,10, от карминово-красного до коричнево-красного цвета с алмазным блеском, прозрачен до просвечивающего. Существует две основные разновидности киновари, это метациннабарит и печёночная киноварь. Метациннабарит имеет металлический блеск и серовато-чёрный цвет. Печёночная киноварь - горючая коричневая разновидность киновари, содержащая битумозные примеси, обычно зернистая или компактная. Состоит из 86,2% Hg и 13,8% S с небольшими вариациями в содержании Hg. Часто загрязнена примесями глины, окислов железа, битумов. Обладает природной гидрофобностью и высокой летучестью. Встречается как вкрапленность в жильный минерал вблизи молодых вулканических пород и горячих источников. Образует ассоциации с пиритом, марказитом, антимонитом, сульфидами меди. Применяется в электроприборах, приборах промышленного контроля, при электролитическом получении хлора и каустической соды и для защиты красок от плесени, а также зубоврачебные препараты, научные приборы, лекарственные препараты и т.д.

1.4 Гипс CaSO4 * 2H2O

Минерал обладает: твёрдостью 2, плотностью 2,32, белым, серым, жёлтым, красным и коричневым цветами со стеклянным, жемчужным или шелковистым блеском, прозрачен до просвечивающего. Различают три основных разновидности гипса: атласный шпат, алебастр и селенит. Атласный шпат - волокнистый гипс с шелковистым блеском. Алебастр - тонкозернистая массивная разновидность. Селенит - разновидность, которая даёт крупные бесцветные прозрачные пластины спайности. Состоит из CaO - 32,6%; SO3 - 46,5%; H2O - 20,9%. Чаще всего встречается в осадочных породах, где может слагать мощные пласты.

Часто переслаивается с известняками и сланцами, является подстилающим слоем для соляных слоёв. Образует также чечевицеобразные тела или рассеянные кристаллы в глинах и сланцах. Образует ассоциации с различными минерами чаще всего с галитом NaCl, ангидритом CaSO4, доломитом CaMg(CO3)2, кальцитом CaCO3, серой S, пиритом FeS2 и кварцем SiO2. Применяется главным образом для изготовления штукатурки. Неотожженный гипс применяется как затвердитель для портланд-цемента. Атласный шпат и алебастр полируются для различных декоративных целей.

1.5 Повеллит CaMoO4

Минерал обладает: твёрдостью 4,5 -5, плотностью 5,9 - 6,1, белым, жёлтым, зелёным и коричневым цветом со стеклянным или алмазным блеском, просвечивает, некоторые образцы прозрачны. Состоит из CaO - 19,4% и Mo - 80,6%, молибден может замещать вольфрам, так что существует частичное изменение состава в сторону шеелита CaWO4. Встречается в гранитных пегматитах, контактово-метаморфических месторождениях и высокотемператур-ных гидротермальных жилах.

Повеллит присутствует в зоне окисления большинства молибденовых месторождений, который представляет собой продукт изменения молибдена. Образует ассоциации с касситеритом SnO2, топазом Al2SiO4 (F, OH)2, флюоритом CaF2, апатитом Ca5(PO4)3(F, Cl, OH), молибденитом MoS2 и вольфрамитом (Fe, Mn)WO4. Применяется главным образом для извлечения молибденита.

Далее приводится таблица флотируемости основных минералов, входящих в состав полезного ископаемого, где указываются основные реагенты применяемые для флотации данных минералов, а также вспомогательные реагенты применяемые для доводки черновых концентратов или очистки их от различных природных примесей.

Таблица 1.1 - Флотируемость основных минералов, входящих в состав п/и

Минералы

Собиратели

Вспениватели

Регуляторы

среды

Активаторы

Подавители

Вспом.

реагенты

Повеллит

Олеиновая

кислота

1,5 кг/т

Сосновое

масло;

ксиленол;

Т-66

(40г/т);

рН = 7 ч 9

-----

-----

Доводка

жидким

стеклом

при вы-

соких

темпера-

турах

Пирротин

Ксантогенаты; аэрофлоты

ОПБС

H2SO4; Na2S;

pH = 4 ч 9

CuSO4

CaO; окислители;

NaCN

-----

Пирит

Ксантогенаты

ОПСБ; ОПСМ; сосновое

масло

Na2CO3;

H2SO4; CaO;

pH = 4 ч 10

Na2S; Na2CO3;

H2SO4

NaCN;

CaO

-----

Гипс

Амины;

высшие

алкилульфаты;

OlNa

-----

H2SO4; NaOH;

pH = 7; > 12

-----

H2SO4;

таннин;

желатин;

жидкое

стекло

Соли

алюминия

Киноварь

Ксантогенаты;

аэрофлоты

Сосновое

масло;

аэрофлоты;

ОПСБ;

аэрофросы

CaO; Na2CO3

pH = 8

CuSO4;

PbCO3

Na2S;

жидкое

стекло

Оттирка;

Обесшламливание

2. Расчёт качественно-количественной схемы

2.1 Расчёт теоретического баланса

Расчёт теоретического баланса, а также все дальнейшие расчёты ведутся по основным минералам: повеллит и киноварь. Для расчёта теоретического баланса необходимо задаться содержанием ртути в молибдене и молибдена в ртути. В соответствии с заданием принимается содержание ртути в молибдене 1,0%, а молибдена в ртути 2,0%. Опираясь на принятые данные производится дальнейший расчёт теоретического баланса.

По заданию содержание молибдена в молибдене или качество молибденового концентрата 45,50%, а ртути в ртути или качество ртутного концентрата 76,80%, содержание ртути в исходной руде 1,30%, содержание молибдена в исходной руде составляет 0,10%, извлечение ртути в ртутный концентрат составляет 92,00%, а молибдена в молибденовый концентрат 76,00%, в соответствии с этим производятся расчёты выходов молибдена, ртути и отвальных хвостов.

Выход ртутного концентрата находится по формуле:

гHg = еHg/Hg * бHg / вHg/Hg, (1)

где еHg/Hg - извлечение ртути в ртутный концентрат, %; бHg - содержание ртути в исходной руде, %; вHg/Hg - содержание ртути в ртутном концентрате, %.

Выход молибденового концентрата находится по формуле:

гMo = еMo/Mo * бMo / вMo/Mo, (2)

где еMo/Mo - извлечение молибдена в молибденовый концентрат, %; бMo - содержание молибдена в исходной руде, %; вMo/Mo - содержание молибдена в молибденовом концентрате, %.

Выход отвальных хвостов находится по формуле:

гОТВ.ХВ. = гИСХ - гHg - гMo, (3)

где гИСХ - выход исходной руды, %. Далее находятся содержание молибдена и ртути в отвальных хвостах. Содержание ртути в отвальных хвостах находится по формуле:

Страницы: 1, 2, 3



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.