на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Исследования химии в 20-21 веках
b> 4.4 Синтез алмазов

Одно из важнейших достижений химии сверхвысоких давлений - синтез алмазов. Первые искусственные алмазы синтезированы в 1954 г. (после длительной, пятидесятилетней поисковой работы) почти одновременно в США и Швеции. Синтез осуществлялся при давлении 50 000 атм. и температуре 2000 °С. Такие алмазы стоили в 30 раз дороже природных, но уже к началу 60-х годов XX в. их стоимость существенно снизилась. В последние десятилетия ежегодно производятся тонны синтетических алмазов, по своим свойствам незначительно отличающихся от природных. Различия между синтетическими и природными алмазами можно определить только с помощью точных физических приборов. Доля искусственных алмазов на мировом рынке превышает 75% от объема всей алмазной продукции.

В недалеком прошлом по производству и потреблению алмазов первое место в мире занимал бывший СССР. Более 8000 предприятий в нашей стране пользовались алмазным инструментом, причем производилось более 2500 видов таких инструментов - от крошечных волочильных устройств до громадных режущих дисков для разрезания крупных каменных блоков.

Промышленный синтез алмазов основан на превращении графита в реакторе высокого давления при наличии различных катализаторов: металлического никеля, сложной смеси железа, никеля и хрома, и др. Кристаллизация алмазов происходит при давлении 50000 - 60000 атм. и температуре 1400- 1600 °С.

Обычно в реакторах высокого давления образуются алмазные кристаллы размером не более 1 мм. Такие мелкие камни вполне пригодны для промышленных целей, но из них трудно изготовить украшения. Сравнительно недавно разработана новая технология, позволяющая выращивать кристаллы алмаза размером до 6 мм. Однако синтез алмазов, которые можно было бы превратить в крупные бриллианты, так сложен и дорог, что синтезированные бриллианты не могут конкурировать с природными: кристалл искусственного алмаза массой 50 - 60 г (250 - 300 карат) стоит столько же, сколько 1 т золота.

Искусственные алмазы используются преимущественно для промышленных целей. Структура молекулы и буровое оборудование с алмазными кристаллами оказались незаменимыми во многих отраслях промышленности. Алмазная технология позволяет повысить производительность труда на 30 - 50, а в некоторых случаях и на 100%. Искусственные алмазы находят применение при изготовлении часов, прецизионных приборов. Ими режут и обрабатывают твердые металлы, керамику, стекло и т.д. С их помощью изготовляют тончайшую проволоку.

Синтезирована особая разновидность черных алмазов, называемая карбонадо, которая тверже алмазов, встречающихся в природе. Синтез карбонадо основан на методе порошковой металлургии (прессование алмазного порошка производится при давлении 30 - 80 тыс. атм., а его спекание - при 1000 °С). Карбонадо позволяет обрабатывать сами алмазы, из него изготавливают сверхтвердые буровые коронки.

По своей структуре алмаз отличается от графита более плотной упаковкой атомов углерода в кристалле. В 1985 г. были синтезированы фуллерены - новая разновидность многоатомных молекул углерода, состоящая из большого числа (от 32 до 90) атомов углерода и имеющая сферическую форму. Дальнейшие работы привели к созданию не только сферических молекул, но и эллипсоидальных (барелленов), трубчатых (тубеленов) и других конфигураций. Из таких молекул можно создавать материалы невиданной прочности, элементы компьютеров XXI в., молекулярные сита и т.п.

Несмотря на рост производства искусственных алмазов и их широкое применение, обычные твердые материалы в виде различных карбидов металлов не утратили своей практической значимости. Хотя карбиды металлов менее тверды, чем алмазы, зато они более термостойки. Сравнительно недавно из нитрида бора синтезирован материал, который тверже алмаза. При давлении 100 000 атм. и температуре 2000 °С нитрид бора превращается в боразон - материал, пригодный для сверления и шлифования деталей из чрезвычайно твердых материалов при очень высоких температурах.

К настоящему времени налажено промышленное производство не только искусственных алмазов, но и других драгоценных камней: корунда (красного рубина и синего сапфира), изумруда и др.

5. СОВРЕМЕННЫЕ синтетические МАТЕРИАЛЫ

Из материалов изготавливаются различные изделия: устройства, машины и самолеты, мосты и здания, космические аппараты и микроэлектронные схемы, ускорители заряженных частиц и атомные реакторы, одежда, обувь и др. Для каждого изделия нужны свои материалы с вполне определенными свойствами, к которым предъявляются высокие требования.

Пластмассы - это материалы на основе природных или синтетических полимеров, способные принимать заданную форму при нагревании под давлением и устойчиво сохранять ее после охлаждения. Помимо полимера пластмассы содержат наполнители, стабилизаторы, пигменты и другие компоненты. Пластмассы различаются по эксплуатационным свойствам (например, антифрикционные, атмосфере-, термо- или огнестойкие), виду наполнителя (стеклопластики, графитопласты и др.), а также по типу полимера (аминопласты, белковые пластики и т.п.). В зависимости от характера превращений, происходящих в полимере при формовании изделий, пластмассы подразделяются на термопласты (важнейшие из них создаются на основе полиэтилена, поливинилхлорида, полистирола) и реактопласты (наиболее крупнотоннажный вид из них - фенопласты). Основные методы переработки термопластов - литье под давлением, вакуумформование, пневмоформование и др. Реактопласты формуются прессованием и литьем под давлением.

В 1980 г. американские ученые впервые обнаружили природную полиэфирную пластмассу в гнездах пчел, живущих в земле.

Массовое производство пластмасс началось во второй половине XX в. В 1900 г. мировое производство пластмасс составило около 20 тыс. т, а в 1970 г. - уже 38 млн. т. В настоящее время объем производства пластмасс сравним с объемом выпуска стали - сотни миллионов тонн в год.

Наиболее перспективны материалы с высокой термостойкостью: полифениленсульфид, ароматические полиамиды, фторполимеры и др. Они выдерживают относительно высокую температуру - 200-450 °С и используются в авиационной и ракетной технике.

Полимерные материалы широко применяются в строительной индустрии для изготовления рам, облицовочных плит, кровли и т.д. За более чем столетнюю историю развития автомобилестроения пластмассы постепенно вытесняют металл. Предполагается, что в ближайшем десятилетии на изготовление одного легкового автомобиля потребуется сотни килограммов пластмасс: полиэтилена, поливинилхлорида, полипропилена и др., тогда как в 1965 г. на один легковой автомобиль приходилось лишь 15 кг полимерных материалов. Уже производят легковые автомобили с полностью пластмассовым кузовом и со многими другими деталями, даже с теми, которые несут высокую механическую нагрузку.

Эластомеры - еще одна разновидность полимерных материалов. К ним относится прежде всего каучук, из которого производится широко распространенная резина, обладающая отличительным свойством - эластичностью. Такое свойство объединяет многие эластичные материалы в одну группу эластомеров. Долгое время был известен только один вид эластичного материала - природный каучук. Он до сих пор добывается из каучукового дерева - бразильской гевеи - таким же способом, как и смола в хвойных лесах, - путем подсечки.

Химия завладела каучуком еще в первой половине XIX в. - в 1841 г. американский изобретатель Гудьир предложил способ вулканизации. Хрупкий при низкой температуре и липкий при нагревании сырой каучук при вулканизации переходит в эластичное состояние. При этом его макромолекулярные цепи образуют сетчатую структуру, соединяясь мостиками из атомов серы. В 1932 г. под руководством нашего соотечественника, выдающегося химика академика С.В. Лебедева (1874 - 1934) разработан первый в мире промышленный способ получения синтетического каучука.

Статистика мирового производства каучука начинается с 1850 г., когда его было добыто около 1500 т. В 1900 г. бразильские леса давали уже 53 900 т каучука. В том же году появился каучук из деревьев, выращенных на плантациях. В последние годы большая часть натурального каучука добывается на крупных плантациях Индокитая. В 1970 г. потребление каучука в мире составило 7,8 млн. т, доля натурального каучука в котором составила около 38%.

Натуральный каучук имеет сравнительно невысокие термостойкость и маслостойкость, подвержен старению. Современные технологии позволяют получить синтетический каучук с лучшими свойствами. К настоящему времени разработано более 10 видов синтетических каучуков и не менее 500 их различных модификаций. Превосходным качеством отличается силиконовый каучук. Он менее эластичен, чем натуральный, но его свойства в интервале температур от 55 до 180 °С мало зависят от температуры, к тому же он физиологически безвреден. Гомогенные и ячеистые полиуретановые эластомеры обладают высокой износостойкостью, химической стойкостью и не подвергаются быстрому старению. Сфера применения эластомеров весьма разнообразна - от машиностроения до обувной промышленности, но все же значительная их доля идет на изготовление шин, потребность в которых с ростом потока автомобилей постоянно возрастает.

Производя синтетические каучуки, химическая промышленность восполняет дефицит природного сырья - каучука. Точно так же производство синтетической кожи сохраняет сырье животного происхождения. По своим свойствам и качеству многие разновидности современной синтетической кожи мало отличаются от натуральной кожи высшего качества.

Синтетические ткани появились во второй половине XX в., хотя внедрение химических технологий в текстильную промышленность началось сравнительно давно - около 200 лет назад, когда с помощью соды и хлорной извести удалось существенно улучшить качество стирки и отбеливания. Например, с применением хлорной извести продолжительность отбеливания хлопковой ткани сократилась с трех месяцев (при луговой отбелке) до шести часов. Во второй половине XIX в. широко внедрялись синтетические органические красители тканей. С начала XX в. химические технологии стали ориентироваться на создание новых волокнистых материалов. Первое чисто синтетическое волокно - нейлон - создано более 60 лет назад, а затем появились акрил, полиамид, полиэфирные волокна. Однако потребители сравнительно быстро оценили как достоинства, так и недостатки синтетических тканей. Немало времени прошло, прежде чем удалось понять и преодолеть различия между природными и синтетическими волокнами. Теперь химия легко воспроизводит лучшие свойства льна, хлопка, шерсти, а естественные материалы давно уже стали предметом многократной химической обработки, придающей, например, хлопку упругость или делающей льняную ткань не столь мнущейся. Концепции современного естествознания : учеб. пособие для вузов / Под ред. А.Ф. Хохлова.- изд. 2-е, испр. - Москва: Дрофа.- 2004 .- С. 94-96.

Новшества сегодняшнего дня затронули и геометрию волокон. Изготовители текстильного сырья стремятся сделать нить возможно тоньше. Тончайшие синтетические нити ткани хорошо видны под микроскопом.

Излюбленный материал сегодняшних модельеров - эластик - удобен не только в спортивной одежде, но и в повседневных костюмах. Существует ткань, в основе которой размещены мельчайшие стеклянные шарики, отражающие свет. Одежда из нее - хорошая защита для тех, кто ночью находится на улице, например для регулировщиков автотранспортного движения.

Одна из разновидностей синтетического материала - кевлар. Он в пять раз прочнее на разрыв, чем сталь, и используется для пошива пуленепробиваемых курток. Весьма оригинальна технология изготовления ткани для одежды космонавта, которая способна уберечь его за пределами атмосферы от леденящего холода космоса и палящей жары Солнца. Секрет такой одежды - в миллионах микроскопических капсул, встроенных в ткань.

Капсулы содержат парафины. При нагревании они плавятся, отбирая тепло, а при охлаждении затвердевают, выделяя тепло.

Производство многообразных синтетических материалов с удивительными свойствами свидетельствует о чрезвычайно высоком уровне современных химических технологий.

6. ПЕРСПЕКТИВНЫЕ МАТЕРИАЛЫ

6.1 Сверхпрочные материалы

Ассортимент материалов различного назначения постоянно расширяется. В последние десятилетия создана естественно-научная база для разработки принципиально новых материалов с уникальными свойствами. В разработке сверхпрочных материалов достигнуты определенные успехи. Например, сталь, содержащая 18% никеля, 8% кобальта и 3 - 5% молибдена, отличается высокой прочностью - отношение прочности к плотности для нее в несколько раз больше, чем для некоторых алюминиевых и титановых сплавов. Преимущественная область ее применения - авиационная и ракетная техника. Коррозионностойкий сплав (62 - 74% кобальта, 20 - 30% хрома, 6 - 8% алюминия) не разрушается в атмосфере кислорода при температуре вплоть до 1050 °С, а при более высокой температуре даже агрессивная сернокислая среда не оказывает на него заметного воздействия.

Большое внимание уделяется разработке композиционных материалов (композитов) - материалов, состоящих из компонентов с различными свойствами. В таких материалах содержится основа с распределенными усиливающими элементами: волокнами и частицами из стекла, металла, дерева, пластмассы и др. Большое число возможных комбинаций компонентов позволяет получить разнообразные композиционные материалы. Способ изготовления композитов известен давно. Еще в 600 г. до н.э. в Вавилоне была построена башня высотой 90 м из глиняных блоков в которых глина была смешана с козьей шерстью. Подобный способ лежит в основе изготовления современных древесных плит, железобетона и других материалов. При оптимальном комбинировании веществ с разными свойствами существенно повышаются прочность и качество композитов.

Целенаправленное исследование свойств композитов началось в 60-е годы XX в., когда новые волокнистые неорганические материалы из бора, карбида кремния, графита, оксида алюминия и т.п. стали сочетать с органическими или металлическими. Композиционные материалы с волокнистой структурой обладают удивительной прочностью. С помощью каната толщиной 3 см из борсодержащих волокон можно буксировать полностью нагруженный четырехмоторный реактивный самолет. Графитовые волокна при 1500 °С прочнее стальных волокон при комнатной температуре. Волокнистые материалы из бора, графита и монокристаллического сапфира (А1203) используются преимущественно в космической технике.

Страницы: 1, 2, 3, 4



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.