на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Кинетика химических реакций
p align="left">Влияние катализаторов на скорость реакции называется катализом. Когда взаимодействующие вещества и катализатор находятся в одном агрегатном состоянии, говорят о гомогенном катализе. При гетерогенном катализе реагирующие вещества и катализатор находятся в различных агрегатных состояниях: обычно катализатор -- в твердом, а реагирующие вещества -- в жидком или газообразном (пример: в случае окисления SO2 в SO3 в присутствии платины или оксида ванадия (V) происходит гетерогенный катализ).

12. Обратимые реакции

В химических реакциях исходные вещества не всегда полностью превращаются в продукты реакции. Это происходит потому, что по мере накопления продуктов реакции могут создаваться условия для протекания обратимой реакции в противоположном направлении.

Например, если смешать пары иода с водородом при температуре 200°С, то произойдет реакция:

Однако известно, что йодистый водород уже при нагревании до 180 °С начинает разлагаться на иод и водород:

Понятно, что в этих условиях не произойдет ни полного разложения НI, так как продукты реакции способны вновь реагировать между собой, ни полного образования йодистого водорода. Химические реакции, которые при одних и тех же условиях могут идти в противоположных направлениях. называются обратимыми.

При написании уравнений обратимых реакций вместо знака равенства ставят две противоположно направленные стрелки. Уравнение рассмотренной выше обратимой реакции запишется следующим образом:

Реакцию, протекающую слева направо называют прямой (константа скорости прямой реакции k1), справа налево -- обратной (константа скорости обратной реакции k2).

13. Химическое равновесие

В обратимых реакциях скорость прямой реакции вначале имеет максимальное значение, а затем уменьшается вследствие уменьшения концентрации исходных веществ, расходуемых на образование продуктов реакции. И наоборот, обратная реация в начальный момент имеет минимальную скорость, которая увеличивается по мере увеличения концентрации продуктов реакции. Следовательно, скорость прямой реакции уменьшается, а обратной -- увеличивается. Наконец, наступает такой момент, когда скорости прямой и обратной реакций становятся равными.

Состояние, в котором скорость обратной реакции становится равной скорости прямой реакции, называется химическим равновесием.

13.1 Константа равновесия, степень превращения

Состояние химического равновесия обратимых процессов количественно характеризуется константой равновесия. Так, для обратимой реакции, которую в общем виде можно записать как

согласно закону действующих масс, скорости прямой реакции v1 и обратной v2 соответственно запишутся следующим образом:

В момент достижения состояния химического равновесия скорости прямой и обратной реакций равны:

где К -- константа равновесия, представляющая собой отношение констант скорости прямой и обратной реакций.

В правой части первого уравнения стоят те концентрации взаимодействующих веществ, которые устанавливаются при равновесии, -- равновесные концентрации.

Второе уравнение представляет собой математическое выражение закона действующих масс при химическом равновесии.

Этот закон является одним из наиболее важных в химии. Исходя из кинетического уравнения любой химической реакции, можно сразу же записать отношение, связывающее равновесные концентрации реагирующих веществ и продуктов реакции. Если определить константу К экспериментально, измеряя равновесные концентрации всех веществ при данной температуре, то полученное значение можно использовать в расчетах для других случаев равновесия при той же температуре.

Численное значение константы равновесия характеризует тенденцию к осуществлению реакции или, другими словами, характеризует выход данной реакции. Так, при К >> 1 выход реакции велик, так как при этом

Понятно, что при К << 1 выход реакции мал.

13.2 Принцип Ле Шателье

Состояние химического равновесия при неизменных внешних условиях может сохраняться сколь угодно долго. В действительности же реальные системы обычно испытывают различные воздействия (изменение температуры, давления или концентрации реагентов), выводящие систему из состояния равновесия. Как только в системе нарушается равновесие, скорости прямой и обратной становятся неодинаковыми и в системе преимущественно протекает процесс, который приводит ее к состоянию равновесия, но уже отвечающему новым условиям. Изменения, происходящие в системе в результате внешних воздействий, определяются принципом подвижного равновесия -- принципом Ле Шателье.

Внешнее воздействие на систему, находящуюся в состоянии равновесия, приводит к смещению этого равновесия в направлении, при котором эффект произведенного воздействия ослабляется.

Внешнее воздействие на систему изменяет соотношение между скоростями прямого и обратного процесса, благоприятствуя тому из них, который противодействует внешнему влиянию.

Принцип Ле Шателье универсален, так как применим не только к чисто химическим процессам, но и к физико-химическим явлениям, таким, как кристаллизация, растворение, кипение, фазовые превращения в твердых телах.

13.3 Смещение химического равновесия под действием температуры и давления (концентрации)

Концентрация. Увеличение концентрации одного из реагирующих веществ сначала приводит к увеличению числа молекул этого вещества. Поскольку число столкновений с участием этих молекул увеличивается, реакция, для которой они являются реагентами, ускоряется. Это приводит к увеличению концентраций реагентов у противоположной реакции и т. д. В результате изменяется концентрация всех веществ, участвующих в химической реакции.

Можно сделать вывод, что при увеличении концентрации одного из реагирующих веществ равновесие смещается в сторону расхода этого вещества, при уменьшении концентрации равновесие смещается в сторону образования этого вещества.

Давление. Влияние давления очень напоминает эффект изменения концентраций реагирующих веществ, но сказывается оно практически только на газовых системах. При повышении давления увеличивается число молекул в единице объема газовой системы. Прямая или обратная реакция, в которой участвует большее количество газообразных веществ, протекает при этом с большей скоростью. В результате этой реакции образуется больше молекул тех веществ, которые участвуют в обратной реакции. Произойдет изменение скорости обратной реакции, и в конце концов будет достигнуто новое состояние равновесия.

При увеличении давления равновесие смещается в сторону уменьшения числа молекул газообразных веществ, т. е. в сторону понижения давления: при уменьшении давления равновесие смещается в сторону возрастания числа молекул газообразных веществ, т. е. в сторону увеличения давления. Если реакция протекает без изменения числа молекул газообразных веществ, то давление не влияет на положение равновесия в этой системе.

Температура. Повышение температуры увеличивает кинетическую энергию всех молекул, участвующих в реакции. Но молекулы, вступающие в реакцию, при которой происходит поглощение энергии (эндотермическая реакция), начинают взаимодействовать между собой быстрее. Это увеличивает концентрацию молекул, участвующих в обратной реакции, и ускоряет ее. В результате достигается новое состояние равновесия с повышенным содержанием продуктов реакции, протекающей с поглощением энергии.

При повышении температуры равновесие смещается в сторону эндотермической реакции, при понижении температуры -- в сторону экзотермической реакции.

14. Гомогенные и гетерогенные реакции

Химическая реакция, протекающая в пределах одной фазы, называется гомогенной химической реакцией. Химическая реакция, протекающая на границе раздела фаз, называется гетерогенной химической реакцией. Сложная химическая реакция, в которой одни стадии являются гомогенными, а другие гетерогенными, называется гомогенно-гетерогенными.

Примером гомогенных реакций может служить любая реакция в растворе, примером гетерогенной реакции - любая реакции, идущая на поверхности твердою катализатора (гетерогенная каталитическая реакция), примерами гомогенно-гетерогенных реакций - некоторые реакции между газами, отдельные стадии которых протекают на стенках реакционного сосуда. Понятия «гомогенный» и «гетерогенный» применимы как к реакции а целом, так и к любой ее отдельной стадии. Гомогенно-гетерогенным может быть только сложный процесс, включающий несколько стадий. Следует отметить, что в гетерогенном процессе исходные вещества и продукты реакции могут находиться в одной фазе. Так, гидрирование этилена в присутствии металлического никеля

С2Н4 + 4Н2 > С2Н6

идет на поверхности металла, но оба исходных вещества - этилен и молекулярный водород - к продукт реакции этан образуют одну фазу.

Возможны и такие случаи, когда реагирующие вещества находятся в разных фазах, но реакция между ними является гомогенной. В качестве примера можно привести окисление углеводорода в жидкой фазе молекулярным кислородом. Исходные вещества - кислород и углеводород - находятся в разных фазах, но реакция между ними является гомогенной, так как в химическую реакцию вступает растворенный в углеводороде кислород. Гетерогенной в рассматриваемом случае является не химическая реакция, а предшествующая ей нехимическая стадия растворения кислорода.

В зависимости от того, одну или несколько фаз образуют исходные вещества и продукты реакции, химические процессы могут быть гомофазными и гегерофазными.

Гомофазным называется процесс, в котором исходные вещества, стабильные стабильные промежуточные вещества и продукты реакции находятся в пределах одной фазы.

Гетерофазным называться процесс, в котором входные вещества, стабильные промежуточные вещества и продукты реакции образуют более чем одну фазу.

Понятия гомо- и гетерофазности совершенно независимы от понятия гомо- и гетерогенности. Так, нейтрализация кислоты щелочью валяется гомогенным гомофазным процессом, рассмотренное выше гидрирование этилена - гомофазным гетерогенным процессом. Окисление углеводорода в жидкой фазе газообразным кислородом представляет собой гомогенный гетерофазный процесс. Наконец, гашение извести

СаО + Н2О>Са(ОН)2

когда все три компонента образуют отдельные фазы и процесс идет на границе раздела воды и СаО, является гетерогенным процессом.

15. Основные типы элементарных реакций.

Общие кинетические закономерности протекания элементарных реакций не зависят от того, какие именно частицы -- молекулы, свободные радикалы, ноны или комплексы -- принимают участие в элементарном акте, каким образом и сколько связей разрывается или образуется в результате элементарного акта. Все эти факторы, однако, существенным образом определяют значения констант скорости или, точнее, энергий активации и предэкспоненциальных множителей, а также характер влияния среды, в которой происходит реакция, на значение кинетических параметров реакции.

В любой химической реакции происходит разрыв одних и образование других химических связей. Исключением являются лишь некоторые простейшие случаи реакции переноса электрона между частицами, например окислительно-восстановительные превращения ионов металлов:

Me1 n+ + Me2m+>Me1(n-1)+ + Me2(m+1)+ (6.1)

Формально не сопровождается разрывом химических связей взаимопревращение пространственных изомеров, например цистрансизомеризация замещенных этил снов. Фактически же при этом в ходе элементарного акта должен произойти разрыв р-связи между атомами, образующими кратную связь, чтобы обеспечить возможность поворота вокруг сохраняющейся у-связн.

Разрыв и образование двухэлектронных связей может осуществляться по двум различным механизмам--с разрывом и без разрыва электронных пар.

Химические процессы, сопровождающиеся разрывом некоторых из существующих или образованием новых электронных пар, называются гомолитическими. Примером может служить реакция атома водорода с молекулой хлора

H + С1:С1>Н:С1 + С1 (6.2)

Химические процессы, в которых образование и (или) разрушение двухэлектронных связей идет без образования и разрыва электронных пар, называются гетеролитическими.

В качестве иллюстрации можно привести гидролиз йодистого метила:

СН3:I + :ОН- > СH3:ОН + I- (6.3)

В этом случае электронная пара, с участием которой была образована разрываемая связь С--I, остается у атома иода, превращающегося в ион I-, а новая связь С--О образуется с участием неподеленной пары электронов атома О, входящего в состав иона ОН-.

Общим для гомолитических и гетеролитических реакции является взаимопревращение атомных и молекулярных орбиталей. В реакции атома водорода с молекулой хлора молекулярная у-орбиталь, образованная Зр-орбиталями атомов CI, и атомная ls-орбиталь атома Н превращаются в молекулярную у-орбиталь молекулы HCI и атомную Зр-орбиталь атома CI. В реакции гидролиза йодистого метила атомная орбиталь, на которой находится неподеленная пара электронов в ионе ОН- и молекулярная у-орбиталь, образованная из р-орбитали атома I и одной из sp3-гибридных орбиталей атома С, превращаются в атомную орбиталь иона I- с неподеленной парой электронов и новую у-орбиталь, образующую связь С--О. Фактически эти реакции классифицированы соответственно как гомолитическая и гетеролитическая потому, что в первом случае на атомной орбитали, участвующей во взаимопревращениях орбиталей, находился неспаренный электрон, а во втором -- неподеленная пара электронов.

Наряду с этим возможны реакции, в которых происходит синхронное превращение нескольких молекулярных орбиталей в несколько новых молекулярных орбиталей. Такие реакции получили название согласованных реакций.

Примером такой реакции может служить распад бромистого этила на этилен и бромистый водород:

CH5Br > CH4 + HBr (6.4)

В ходе этой реакции молекулярные орбитали, образовывавшие у-связн С--Н и С -Вr в исходном бромистом этиле, переходят в новые молекулярные орбитали -- р-орбиталь этилена и у- орбиталь молекулы НВr. В этом случае четыре электрона переходят со старых орбиталей на новые, но нет никаких оснований говорить ни о разрыве, ни о сохранении электронных пар и тем самым классифицировать процесс как гомолитический или гетеролитический.

При образовании активированного комплекса в той или иной мере затрагивается большое число атомов и химических связей в реагирующих частицах, а в случае реакций в растворах -- и окружающих молекул растворителя. Например, в реакции гидролиза йодистого метила разрывается связь С--I и образуется связь С--О. Однако, помимо этого, при образовании активированного комплекса изменяется тип гибридизации молекулярных орбиталей связей С--Н, изменяется полярность связи О--Н и, существенной перестройке подвергаются сольватные оболочки вокруг реагирующих частиц. Тем не менее основными участниками химического превращения в этой реакции являются атомы С, I и О, и совокупность этих атомов можно рассматривать как реакционный центр активированного комплекса (можно изобразить этот реакционный центр в виде I***C***O. Реакционные центры различаются по числу формирующих их атомов. В зависимости от этого активированный комплекс называют двухцентровым, трехцентровьш и т. п. Связи между атомами в реакционном центре могут образовывать незамкнутую или замкнутую линию. В зависимости от этого активированный комплекс называют линейным или циклическим. В рассмотренном выше примере реакция гидролиза йодистого метила идет через линейный трехцентровый активированный комплекс.

В реакции распада бромистого этила на этилен и бромистый водород основными участниками химического превращения являются атомы С, один из атомов Н и атом Вг, и реакционный центр активированного комплекса можно изобразить в виде

Это пример четырехцентрового циклического активированного комплекса.

Реакциями, идущими через активированный комплекс с двухатомным реакционным центром, являются реакция диссоциации частицы на две или обратная ей реакция рекомбинации частиц. Общая схема такой реакции может быть записана в виде

А--В-А…B-A + B (6.5)

Простейшим типом реакций, идущих через трехцентровый линейный активированный комплекс, являются реакции типа

А--В + С-А - В…С-А + В--С (6.6)

Такие реакции обычно называют реакциями замещения при соответствующем атоме во фрагменте В. Примером такой реакции является реакция гидролиза йодистого метила, которая представляет собой реакцию замещения при углеродном атоме радикала СН3. В случае если В является атомом, а не радикалом, то обычно говорят о реакции отрыва атома. Например, реакция

СН4 + С1>СН3 + НС1 (6.7)

является реакцией отрыва атома Н от молекулы метана атомом CL К этому же типу реакций относятся реакции переноса протона

В + НА > ВН+ - (6.8)

лежащие в основе всех кислотно-основных равновесий.

Если в (6.6) связь между А и В кратная, то образуются не две, а одна частица:

А=В +С - А -- В…С-А--В--С (6.9)

В этом случае говорят о присоединении частицы С по двойной связи А=В. Обратную реакцию -- отщепление С от ABC с образованием р-связи -- называют элиминированием.

В реакционном центре линейного активированного комплекса может принимать участие и большее число атомов. Так, через четырехцентровый активированный комплекс идут реакции образования свободных радикалов при взаимодействии двух валентно-насыщенных молекул по общей схеме

А--В+С--D-A...В...С…D> A + B-C+D' (6.10)

или в случае, когда одна из разрываемых связен двойная, по схеме

A--B + C=D-A…В…С…D-A+B--С--D (6.11)

По схеме, обратной (6.11), идут реакции диспропорционирования свободных радикалов, например:

В циклическом активированном комплексе может также участвовать большое число атомов. Например, в комплексе глюкозы с б-оксипиридином

при переходе глюкозы из пиранозной формы в нециклическую синхронно разрываются четыре связи и образуются четыре новые связи. В результате этой реакции проходит мутаротация глюкозы, г. е. обращение конфигурации у первого углеродного атома. Этим объясняется сильное каталитическое действие б-оксипиридина в реакции.

Активированный комплекс одного и того же типа может реализоваться в случае как гомолитического, так и гетеролитического процесса. Например, реакции (6.3) и (6.7) идут через линейный трехцентровый активированный комплекс по типу (6.6). Однако первый процесс является гетеролитическим - связь С--I разрывается с переходом пары электрона на атом I, а новая связь С--О завязывается с участием неподеленной пары электронов ОН-. Второй процесс, наоборот, является гомолитическим -- двухэлектронная связь Н--С1 образуется с участием неспаренного электрона атома Сl и одного из 1S-электронов атома Н, участвующего в образовании связи С--Н. Электронная пара, образующая эту связь, при этом разрывается и второй электрон остаётся в виде неспаренного электрона на атоме С свободного метила.

16. Окислительно - восстановительные реакции

Окислительно-восстановительные процессы принадлежат к числу наиболее распространенных химических реакций и имеют огромное значение в теории и практике. Окисление-восстановление -- один из важнейших процессов природы.

Дыхание, усвоение углекислого газа растениями с выделением кислорода, обмен веществ и ряд других химических процессов в основе своей являются окислительно-восстановительными реакциями. Сжигание топлива в топках паровых котлов и двигателях внутреннего сгорания, электролитическое осаждение металлов, процессы, происходящие в гальванических элементах и аккумуляторах, включают реакции окисления-восстановления.

Получение элементарных веществ (железа, хрома, марганца, золота, серебра, серы, хлора, йода и т.д.) и ценных химических продуктов (аммиака, щёлочей, азотной, серной и других кислот) основана на окислительно-восстановительных реакциях.

Инертные газы лишь в исключительных случаях способны вступать в окислительно-восстановительные реакции.

Все окислительно-восстановительные реакции можно разделить на следующие типы:

1.Реакции межатомного и межмолекулярного окисления-восстановления -обмен электронами происходит между различными атомами, молекулами или ионами. Например, простейшие реакции соединения и замещения:

2Ca+O2 = 2CaO

2Hl+Br
2 = 2HBr + I2

2Al + 3CuSO
4 =Al2( SO4)3 +3Cu

2. Реакции диспропорционирования (самоокисления-самовосстановления ) харакктерны для соединений или простых веществ, отвечающих одному из промежуточных значений степени окисления данного элемента, например:

Cl2+2NaOH ----- NaCl +NaClO

P + H2 ----- PH3 + H3PO3

3. Реакции внутримолекулярного окисления-восстановления. В этих реакциях одна составная часть молекулы выполняет функцию окислителя, а другая восстановителя. Простейшими примерами таких реакций могут служить процессы термического разложения сложного вещества на более простые составные части, например

2NO2 ----- NO2 + O2 4KСlO3 ----- KСlO4 + KCl

2KСlO3 ------ 3O2 + 2KCl 2AgNO3 ----- 2Ag + 2No2 + O2

Вывод

Российскими и зарубежными учёными успешно разрабатываются и многие другие актуальные проблемы химической кинетики например, применение квантовой механики к анализу элементарного акта реакции; установление связей между строением веществ и кинетическими параметрами, характеризующими их реакционную способность; изучение кинетики и механизма конкретных сложных химических реакций с применением новейших физических экспериментальных методов и современной вычислительной техники; использование кинетических констант в инженерных расчётах в химической и нефтехимической промышленности.

Литература

1. Эмануэль Н.М., Кнорре Д.Г. Курс химической кинетики: Учебник для хим. фак. тов. --4-е изд., перераб. и доп. --М.: Высш. шк., 1984 463 с, ил.Стромберг А.Г., Семченко Д.П.

2. Стромберг А.Г., Семченко Д.П. Физическая химия: Учеб. для хим. спец. вузов/Под ред. А.Г.Стром-берга. - 4-е изд., испр. - М.: Высш.шк., 2001. - 527 с: ил.

3. Глесстон С, Лейдлер К.» Эйринг Г. Теория абсолютных скоростей реакций -- М.: ИЛ, 1948, 576 с.

4. Бенсон С. Основы химической кинетики. -- М.; Мир» 1964, 603 с.

5. Воеводский В. В. Физика и химия элементарных химических процессов -- М.: Наука, 1969, 414 с.

6. Кондратьев В. Н. Константы скорости газофазных реакций. -- М: Наука 1970, 351 с.

7. Денисов Е. Т. Константы скорости гомолитических жидкофазных реакций -- М.: Наука, 1971, 711 с.

8. Бучаченко А. Л. Химическая поляризация электронов и ядер. -- М: Наука 1974, 244 с.

9. Дженкс В. П. Катализ в химии и энзимологии. -- М.: Мир, 1972, 467 с. Ашмор П. Катализ и ингибирование химических реакций, -- М.: Мир, 1966 507 с.

Страницы: 1, 2, 3



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.