на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Металлы в периодической системе Д.И. Менделеева
p align="left">Наибольшее практическое применение находят соедине-ния калия -- гидроксид КОН, нитрат КNO3 и карбонат К2СO3.

Гидроксид калия КОН (техническое название -- едкое кали) -- белые кристаллы, расплывающиеся во влажном воз-духе и поглощающие углекислый газ (образуются К2СO3 и КНСO3). Очень хорошо растворяется в воде с высоким экзо-эффектом. Водный раствор -- сильнощелочной.

Производят гидроксид калия электролизом раствора КСl (аналогично производству NаОН). Исходный хлорид калия КСl получают из природного сырья (минералы сильвин КСlи карналлит КМgС13 * 6Н20). Используют КОН для синтеза различных солей калия, жидкого мыла, красителей, как электролит в аккумуляторах.

Нитрат калия КNO3 (минерал калийная селитра) -- белые кристаллы, очень горькие на вкус, низкоплавкие {tпл = 339 °С). Хорошо растворим в воде (гидролиз отсутству-ет). При нагревании выше температуры плавления разлагает-ся на нитрит калия КNO2 и кислород O2, проявляет сильные окислительные свойства. Сера и древесный уголь загораются при контакте с расплавом КNO3, а смесь С + S взрывается (сго-рание «черного пороха»):

2КNO3 + ЗС(уголь) + S=N2 + 3CO2 + K2S

Нитрат калия используется в производстве стекла и мине-ральных удобрений.

Карбонат калия К2СO3 (техническое название -- поташ) -- белый гигроскопичный порошок. Очень хорошо растворяется в воде, сильно гидролизуется по аниону и создает щелочную среду в растворе. Используется в изготовлении стекла и мыла.

Получение К2СO3 основано на реакциях:

К2SO4 + Са(ОН)2 + 2СO = 2К(НСОО) + СаSO4

2К(НСОО) + O2 = К2С03 + Н20 + С02

Сульфат калия из природного сырья (минералы каинит КМg(SO4)Сl * ЗН20 и шёнит К2Мg(SO4)2 * 6Н20) нагревают с гашёной известью Са(ОН)2 в атмосфере СО (под давлением 15 атм), получают формиат калия К(НСОО), который прока-ливают в токе воздуха.

Калий жизненно важный элемент для растений и живот-ных. Калийные удобрения -- это соли калия, как природные, так и продукты их переработки (КСl, К2SO4, КNO3); высоко содержание солей калия в золе растений.

Калий -- девятый по химической распространенности элемент в земной коре. Содержится только в связанном виде в минералах, морской воде (до 0,38 г ионов К+ в 1 л), растениях и живых организмах (внутри клеток). В организме человека имеется = 175 г калия, суточная потребность достигает ~4г. Радиоактивный изотоп 40К (примесь к преобладающему ста-бильному изотопу 39К) распадается очень медленно (период полураспада 1 * 109лет), он, наряду с изотопами 238U и 232Тh, вносит большой вклад в геотермический запас нашей планеты (внутренняя теплота земных недр).

Медь.

От (лат. Cuprum), Сu, химический элемент подгруппы 16 периодической системы; атомный номер 29, атомная масса 63,546 относится к переходным металлам. Природная медь представляет собой смесь нуклидов с массовыми числами 63 (69,1%) и 65 (30,9%).

Распространённость в природе. Среднее со-держание меди в земной коре 4,7-10~3% по массе.

В земной коре медь встречается как в виде самородков, так и в виде различных минералов. Самородки меди, порой значительных размеров, покрыты зелёным или голубым налётом и не-обычайно тяжелы по сравнению с камнем; самый большой самородок массой около 420 т был найден в США в районе Великих Озёр (ри-сунок). Подавляющая часть меди присутствует в горных породах в виде соединений. Известно более 250 минералов, содержащих медь. Про-мышленное значение имеют: халькопирит (мед-ный колчедан) СuFeS2, ковеллин (медный ин-диго) Сu2S, халькозин (медный блеск) Сu2S, куп-рит Сu2О, малахит СuСОз*Си(ОН)2 и азурит 2СиСОз*Си(ОН)2. Почти все минералы меди ярко и красиво окрашены, например халькопирит от-ливает золотом, медный блеск имеет синевато- стальной цвет, азурит - густо синий со стеклянным блеском, а кусочки ковеллина отливают всеми цветами радуги. Многие из медных минералов - поделочные и драгоценные камни -самоцветы; очень высоко ценятся малахит и би-рюза СuА16(РO4)4(ОН)8*5Н2O. Наиболее крупные месторождения медных руд находятся в Северной и Южной Америке (гл. обр. в США, Канаде, Чили, Перу, Мексике), Африке (Замбия, ЮАР), Азии (Иран, Филип-пины, Япония). В России залежи медных руд имеются на Урале и Алтае.

Медные руды обычно полиметаллические: по-мимо меди они содержат Fe, Zn, Рb, Sn, Ni, Мо, Аu, Аg, Sе, платиновые металлы и др.

Историческая справка. Медь известна с не-запамятных времён и входит в «великолепную семёрку» древнейших металлов, используемых человечеством, - это золото, серебро, медь, же-лезо, олово, свинец и ртуть. По археологиче-ским данным, медь была известна людям уже 6000 лет назад. Она оказалась первым метал-лом, заменившим древнему человеку камень в первобытных орудиях труда. Это было начало т.наз. медного века, который длился около двух тысячелетий. Из меди выковывали, а потом и выплавляли топоры, ножи, булавы, предме-ты домашнего обихода. По преданию, античный бог-кузнец Гефест выковал для непобедимого Ахилла щит из чистой меди. Камни для 147-метровой пирамиды Хеопса также были до-быты и отёсаны медным инструментом.

Древние римляне вывозили медную руду с ос-трова Кипр, отсюда и произошло латинское на-звание меди - «купрум». Русское название «медь», по-видимому, связано со словом «смида», что в древности означало «металл».

В рудах, добываемых на Синайском полуост-рове, иногда попадались руды с примесью олова, что привело к открытию сплава меди с оловом -бронзы. Бронза оказалась более легкоплавкой и твёрдой, чем сама медь. Открытие бронзы положило начало длительному бронзовому веку (4-1-е тысячелетия до н. э.).

Свойства. Медь - металл красного цвета. Т.пл. 1083 "С, т. кип. 2567 °С, плотность 8,92 г/см . Это пластичный ковкий металл, из него можно прокатать листочки в 5 раз тоньше папиросной бумаги. Медь хорошо отражает свет, прекрасно проводит тепло и электричество, ус-тупая только серебру.

Конфигурация внешних электронных слоев атома меди 3d104s1 (d-элемент). Хотя медь и щелочные металлы находятся в одной и той же I группе, их поведение и свойства сильно различаются. С щелочными металлами медь сближает только способность образовывать од-новалентные катионы. При образовании соеди-нений атом меди может терять не только внешний s-электрон, но один или два d-электрона предшествующего слоя, проявляя при этом бо-лее высокую степень окисления. Для меди сте-пень окисления +2 более характерна, чем +1.

Металлическая медь малоактивна, в сухом и чистом воздухе стабильна. Во влажном воздухе, содержащем СО2, на её поверхности образуется зеленоватая плёнка Сu(ОН)2*СuСОз, называемая патиной. Патина придаёт изделиям из меди и ее сплавов красивый «старинный» вид; сплош-ной налёт патины, кроме того, защищает металл от дальнейшего разрушения. При нагревании меди в чистом и сухом кислороде происходит образование чёрного оксида СиО; нагревание выше 375°С приводит к красному оксиду Сu2О. При нормальной температуре оксиды ме-ди на воздухе устойчивы.

В ряду напряжений медь стоит правее водо-рода, и поэтому она не вытесняет водород из воды и в бескислородных кислотах не. Растворяться в кислотах медь может только при её одновременном окислении, на-пример в азотной кислоте или концентрирован-ной серной кислоте:

ЗСu + 8НNO3 = ЗСu(NO3)2 + 2NО + 4Н2O

Сu + 2Н2S04 = СиSO4 + SO2 + 2Н2O

Фтор, хлор и бром реагируют с медью, образуя соответствующие дигалогениды, например:

Сu + Сl2 = СuСl2

При взаимодействии нагретого порошка меди с йодом получается иодид Сu(I), или моноиодид меди:

2Сu +I2 = 2СuI

Медь горит в парах серы, образуя моносуль-фид СиS. С водородом при нормальных условиях не взаимодействует. Однако, если образцы меди содержат микропримеси оксида Си2O, то в ат-мосфере, содержащей водород, метан или оксид углерода, происходит восстановление оксида ме-ди до металла:

Сu2O+ Н2 = 2Сu + Н2O

Сu2O+ СО = 2Сu + СO2

Выделяющиеся пары воды и СO2 вызывают по-явление трещин, что резко ухудшает механи-ческие свойства металла («водородная болезнь»). Соли одновалентной меди - хлорид СuСl, сульфит Сu2SOз, сульфид Сu2S и другие - как правило, плохо растворяются в воде. Для двух-валентной меди существуют соли практически всех известных кислот; наиболее важные из них - сульфат СuSO4, хлорид СuСl2, нитрат Сu(NОз)2.Все они хорошо растворяются в воде, а при выделении из неё образуют кристалло-гидраты, например СuСl2*2Н2O, Си(NOз)2*6Н2O, Си804-5Н20. Цвет солей - от зелёного до синего, т. к. ион Сu в воде гидратируется и находится в виде голубого аква-иона [Сu(Н2O)6]2+, который и определяет цвет растворов солей двухвалент-ной меди.

Одну из важнейших солей меди - суль-фат- получают растворением металла в на-гретой разбавленной серной кислоте при про-дувании воздуха:

2Сu + 2Н2SO4 + O2 = 2СuSO4 + 2Н2O

Безводный сульфат бесцветен; присоединяя во-ду, он превращается в медный купорос СuSO4-5Н2O - лазурно-синие прозрачные кри-сталлы. Благодаря свойству сульфата меди из-менять окраску при увлажнении его используют для обнаружения следов воды в спиртах, эфирах, бензинах и др.

При взаимодействии соли двухвалентной ме-ди с щёлочью образуется объёмный осадок го-лубого цвета - гидроксид Сu(ОН)2. Он амфотерный: в концентрированной щёлочи рас-творяется с образованием соли, в которой медь находится в виде аниона, например:

Сu(ОН)2 + 2КОН = К2[Сu(ОН)4]

В отличие от щелочных металлов, для меди характерна склонность к комплексообразованию - ионы Сu и Сu2+ в воде могут образо-вывать комплексные ионы с анионами (Сl-, СN-), нейтральными молекулами (NH3) и некоторыми органическими соединениями. Эти комплексы, как правило, ярко окрашены и хорошо раство-ряются в воде.

Получение и применение. Ещё в 19 в. медь выплавляли из руд, содержащих не менее 15% металла. В настоящее время богатые медные руды практически исчерпаны, поэтому медь гл. обр. получают из сульфидных руд, содержащих лишь 1-7% меди. Выплавка металла - длитель-ный и многоступенчатый процесс.

После флотационной обработки исходной ру-ды концентрат, содержащий сульфиды железа и меди, помещают в медеплавильные отража-тельные печи, нагреваемые до 1200 °С. Кон-центрат плавится, образуя т. наз. штейн, содер-жащий расплавленные медь, железо и серу, а также твёрдые силикатные шлаки, всплываю-щие на поверхность. В выплавленном штейне в виде СuS содержится около 30% меди, ос-тальное - сульфид железа и сера. Следующая стадия - превращение штейна в т. наз. черновую медь, которое осуществляют в горизонтальных конвертерных печах, продуваемых кислородом. Сначала окисляется FeS; для связывания полу-чающегося оксида железа в конвертер добавля-ют кварц - при этом образуется легко отделя-емый силикатный шлак. Затем окисляется СuS, превращаясь в металлическую медь, и выделяется SO2:

СuS + O2 = Сu + SO2

После удаления воздухом SO2 оставшуюся в конвертере черновую медь, содержащую 97- 99% меди, разливают в формы и затем под-вергают электролитической очистке. Для этого слитки черновой меди, имеющие форму толстых досок, подвешивают в электролизных ваннах, содержащих раствор медного купороса с добав-лением Н2SO4. В тех же ваннах подвешены и тонкие листы чистой меди. Они служат като-дами, а отливки из черновой меди - анодами. Во время прохождения тока на аноде происходи растворение меди, а на катоде - её выделение:

Сu - 2е = Сu2+

Сu2+ + 2е = Сu

Примеси, в том числе серебро, золото, платина, выпадают на дно ванны в виде илообразной массы (шлама). Выделение из шлама благород-ных металлов обычно окупает весь этот энерго-ёмкий процесс. После такого рафинирования полученный металл содержит 98-99% меди.

Медь издавна применялась в строительстве: древние египтяне строили медные водопроводы; крыши средневековых замков и церквей по-крывали листовой медью, например знамени-тый королевский замок в Эльсиноре (Дания) покрыт кровельной медью. Из меди изготовляли монеты и украшения. Благодаря малому элек-трическому сопротивлению медь является глав-ным металлом электротехники: больше полови-ны всей получаемой меди идёт на производство электрических проводов для высоковольтных передач и слаботочных кабелей. Даже ничтож-ные примеси в меди приводят к повышению её электрического сопротивления и большим по-терям электроэнергии.

Высокая теплопроводность и сопротивление коррозии позволяют изготовлять из меди детали теплообменников, холодильников, вакуумных аппаратов, трубопроводов для перекачки масел и топлив и пр. Широко используют медь и в гальванотехнике при нанесении защитных по-крытий на стальные изделия. Так, например, при никелировании или хромировании стальных предметов на них предварительно осаждают медь; в этом случае защитное покрытие служит дольше и эффективней. Медь используют также в гальванопластике (т.е. при тиражировании из-делий методом получения их зеркального ото-бражения), например при изготовлении метал-лических матриц для печатания денежных ку-пюр, воспроизведения скульптурных изделий.

Значительное количество меди расходуется на изготовление сплавов, которые она образует со многими металлами. Основные сплавы меди, как правило, делятся на три группы: бронзы (сплавы с оловом и другими металлами, кроме цинка и никеля), латуни (сплавы с цинком) и медно-никелевые сплавы. О бронзах и латунях в эн-циклопедии есть отдельные статьи. Наиболее из-вестные медно-никелевые сплавы - мельхиор, нейзильбер, константан, манганин; все они содержат до 30-40% ни-келя и разные легирующие добавки. Применяют эти сплавы в кораблестроении, для изготовления деталей, работающих при повышенной темпе-ратуре, в электротехнических приборах, а также для бытовых металлических изделий вместо се-ребра (столовые приборы).

Разнообразное применение находили и нахо-дят соединения меди. Оксид и сульфат двухва-лентной меди применяют для изготовления не-которых видов искусственного волокна и для получения других соединений меди; СuО и Сu2О используют для производства стекла и эмалей; Сu(NОз)2 - ситцепечатании; СuСl2 - компо-нент минеральных красок, катализатор. Мине-ральные краски, содержащие медь, известны издревле; так, анализ древних фресок Помпеи и настенной живописи на Руси показал, что в состав красок входил основный ацетат меди Сu(OН)2*(СНзСОО)2Сu2, он-то и служил ярко-зе-лёной краской, называемой на Руси ярь-медянкой.

Медь принадлежит к числу т. наз. биоэлемен-тов, необходимых для нормального развития растений и животных. При отсутствии или не-достатке меди в растительных тканях умень-шается содержание хлорофилла, листья желте-ют, растения перестают плодоносить и могут погибнуть. Поэтому многие соли меди входят в состав медных удобрений, например медный ку-порос, медно-калийные удобрения (медный ку-порос в смеси с КСд). Соли меди, кроме того, применяют и для борьбы с болезнями растений. Более ста лет для этого используется бордоская жидкость, содержащая основный сульфат меди [Сu(OН)2]зСuSО4; получают его по реакции:

4СuSO4 + ЗСа(ОН)2 = СuSO4 *ЗСu(ОН)2 + ЗСаSО4

Студенистый осадок этой соли хорошо покры-вает листья и долго удерживается на них, за-щищая растение. Аналогичным свойством об-ладают Сu2О, хлороксид меди ЗСu(ОН)2*СuСl2, а также фосфат, борат и арсенат меди.

В организме человека медь входит в состав некоторых ферментов и участвует в процессах кроветворения и ферментативного окисления; среднее содержание меди в крови человека -около 0,001 мг/л. В организмах низших жи-вотных меди намного больше, например гемоцианин - пигмент крови моллюсков и ракооб-разных - содержит до 0,26% меди. Среднее со-держание меди в живых организмах - 2-10-4% по массе.

Для человека соединения меди в большинстве своём токсичны. Несмотря на то, что медь вхо-дит в состав некоторых фармацевтических пре-паратов, попадание её в желудок с водой или пищей в больших количествах может вызвать тяжёлые отравления. Люди, долго работающие на выплавке меди и её сплавов, часто заболевают «медной лихорадкой» - повышается темпера-тура, возникают боли в области желудка, сни-жается жизненная активность лёгких. Если соли меди попали в желудок, до прихода врача необходимо срочно его промыть и принять моче-гонное средство.

Заключение.

Металлы служат основным конструкционным материалом в ма-шиностроении и приборостроении. Все они обладают общими так называемыми металлическими свойствами, но каждый элемент про-являет их в соответствии с его положением в периодической си-стеме Д. И. Менделеева, т. е. в соответствии с особенностями строения его атома.

Металлы активно вступают во взаимодействие с элементарными окислителями с большой электроотрицательностью (галогены, кис-лород, сера и др.) и поэтому при рассмотрении общих свойств металлических элементов необходимо учитывать их химическую активность по отношению к неметаллам, типы их соединений и формы химической связи, так как это определяет не только ме-таллургические процессы при их получении, но и работоспособность металлов в условиях эксплуатации.

Сегодня, когда развитие экономики идет большими темпами появилась потребность быстровозводимых строениях, при этом не требующих значительных капиталовложений. В основном это нужно для строительства торговых павильонов, развлекательных центров, складов. С применением металлоконструкций такие строения теперь можно не только легко и быстро возводить, но и с той же легкостью разбирать когда заканчивается арендный срок или для переезда на другое место. Более того в такие легко возводимые здания не трудно подвести коммуникации, отопление, свет. Здания из металлоконструкций выдерживают суровые условия природы не только по температурным режимам, но и что не мало важно по сейсмологической активности, там, где возводить кирпичные строения не легко и не безопасно.

Тот ассортимент металлоконструкций, который предлагается сегодня промышленностью легко транспортабелен, может подниматься любыми кранами. Соединение и монтаж таких конструкций может производиться как при помощи болтов, так и с помощью сварки. Появление легких металлоконструкций, которые изготавливаются и поставляются комплексно играют большую положительную роль при строительстве общественных зданий в сравнении со строительством зданий из железобетона, и значительно уменьшает сроки выполнения работ.

Список используемой литературы.

1. Хомченко Г.П. Пособие по химии для поступающих в вузы. - 3-е издание-М.: ООО «Издательство Новая Волна», ЗАО «Издательский Дом ОНИКС», 1999.-464 с.

2. А.С.Егорова. Химия. Пособие для поступающих в Вузы- 2-е издание - Ростов н/Д: изд-во «Феникс», 1999. - 768 с.

3. Фролов В.В. Химия: Учебное пособие для машиностроительных специальных вузов. - 3-е изд., перераб. и доп. - М.: Высшая школа, 1986.-543 с.

4. Лидин Р.А. Химия. Для школьников старших классов и поступающих в вузы: Теоретические основы. Вопросы. Задачи. Тесты: Учеб. Пособие/2-е изд., стереотип. - М.: Дрофа, 2002. - 576 с.

5. Ю.А.Золотов. Химия. Школьная энциклопедия.М.:- Дрофа, «Большая Российская энциклопедия»., 2003. - 872 с.

Страницы: 1, 2, 3



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.