на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Методы определения концентрации растворённого кислорода в воде
p align="left">Кроме применеия азида есть и другие способы подавления или учета влияния нитритов: применение мочевины или сульфаминовой кислоты. Все эти реактивы разрушают нитрит до молекулярного азота.

3. Органические вещества.

Понятно, что влияние орг. веществ, как выраженных восстановителей будет проявляться на всех этапах определения растворенного кислорода по Винклеру. Молекулярный кислород, окисленные формы марганца, молекулярный йод - все это достаточно сильные окислители для взаимодействия с органическими примесями. Если вода богата орг. веществами (окисляемость 15-30мгО2/л и более), то оказывается необходимым вводить поправку на их взимодействие. Например в руководстве предлагается проводить параллельную йодную пробу, находя тем самым сколько йода израсходовалось на иодирование орг. примесей. Но есть методы, которые основаны на проведении метода Винклера, в отличающихся от классических условиях (время анализа, концентрации реагентов). Таким образом удается подобрать условия, при которых мешающим действием примеси можно пренебречь.

Нельзя здесь не отметить оригинальные работы Голтермана. В этой работе ему удалось разработать химический метод, сочетающий в себе определение концентрации растворенного кислорода и определение химического потребления кислорода (ХПК-Суммарная нормальность восстановителей, выраженная в мгО2/л.). В соответствии с его методикой растворенный кислород в щелочной среде фиксируется не Mn(II), а солью Ce(III).

Ce3+ + 3OH- = Ce(OH)3

4Ce(OH)3 + O2 +2H2O = 4Ce(OH)4

Выделившейся Ce(IV) после растворения его в растворе кислоты определяется фотометрически или титриметрически. Кроме того, использование солей церия (III, IV) позволяет учесть расход церия (IV) на окисление примеси-восстановителя, проводя «холостой» опыт, т.е. вводя в пробу воды не Ce(III), а Ce(IV) на стадии фиксации кислорода.

aCe(OH)4 + bR = (a-b) Ce(OH)3 + Ce(OH)3, R-орг. примесь

4. Сульфиды и H2S

Обнаружено, что содержание в анализируемой воде сульфидов приводит к занижению результатов метода Винклера. При этом обнаружено, что взаимодействие сульфида с окислителями носит стехиометрический характер: 1 моль кислорода и 2 моля сульфида. В результате реакции выделяется элементарная сера. Поскольку в методе Винклера сильными окислителями являются кроме кислорода также йод и маргенец (III, IV), то в формулировании механизма взаимодействия сульфида с окислителем есть различные мнения. Так в работе считается, что сульфид взаимодействует с окисленными формами марганца, а в с йодом. В работе разработан метод одновременного определения сульфидов и кислорода в пробе воды. Авторы, используя соли Zn, осаждают ZnS, который далее отделяют и определяют спектрофотометрически, а в оставшейся над осадком воде проводят определение растворенного кислорода. В более ранней работе использована сходная схема, но использовался не сульфат, а ацетат Zn. При взаимодействии кислорода и сульфида возможно также образование тиосульфата, в качестве промежуточного соединения. В работе предложен способ учета такого тиосульфата по методу холостой пробы.

В заключение нужно отметить, что наряду с модификациями и методиками, разработанными специально под конкретные примеси, существуют более общие методики, направленные на определения общего содержания восстановителей (метод Росса) и окислителей.

Точность прямого метода Винклера и его возможные ошибки.

На протяжении всей первой половины 20-го века в ходе лабораторных и полевых работ был собрана большая экспериментальная база по результатам определения кислорода методом Винклера. Были обнаружены расхождения в результатах определений растворенного кислорода в одних и тех же водах по методам, различающимся только деталями, например способом стандартизации раствора тиосульфата, концентрацией реагентов, способом титрования (всего раствора или аликвоты) и др. В большей мере эта проблема - проблема стандартизации метода Винклера, проявлется в многообразии таблиц растворимости кислорода. Различия в табличных значениях растворимости кислорода до 6% способствовали проведению исследований по принципиальным вопросам методической основы и методическим погрешностям метода Винклера. В результате таких работ был сформулирован ряд потенциальных источников принципиальных ошибок метода в чистых водах:

окисление иодида кислородом воздуха

улетучивание молекулярного иода

содержание растворенного кислорода в добавляемых реактивах в процедуре фиксации кислорода

примесь молекулярного иода в иодиде

несовпадение точки конца титрования и точки эквивалентности

малая устойчивость растворов тиосульфата натрия и соответственно необходимость частой стандартизации

ошибки при стандартизации тиосульфата натрия

трудность титрования малых количеств иода

использование крахмала в качестве индикатора: его нестойкость и уменьшение чувствительности с повышением температуры

Остановимся подробнее на наиболее значимых ошибках. Окисление иодида кислородом ускорется с ростом кислотности. Уменьшить влиние этого процесса можно регулируя рН среды. Рекомендуемое значение кислотности составлет рН=2-2.5. Увеличение рН более 2.7 опасно, т. к. там уже возможен процесс гидратообразования марганца. Одновременно с окислением иодида возможен также и процесс улетучивания йода. Образование комплексной частицы J3- в условиях избытка иодида (см. схему метода Винклера) позволет связать практически весь молекулярный йод в растворе. понятно, что вводя раствор соли марганца и щелочной реагент (щелочь+иодид), мы тем самым вносим неучтенное количество кислорода, растворенного в этих реактивах. Поскольку в различных вариантах метода Винклера использовались реактивы различных концентраций, то использовать в расчетах какую-либо одну поправку было нельзя. Приходилось для каждого метода использовать свои собственные расчетные или экспериментальные значения привнесенного с реактивами кислорода. Обычно эти значения находились в интервале 0.005-0.0104 ррм.

К середине 60-х годов назрела необходимость в единой процедуре определения растворенного кислорода. Это отчасти было обусловлено большим разнообразием химических методик, развитием инструментальных методов и необходимостью их взаимного сравнения. На основе опубликованной работы, Карпентер сформулировал процедуру определения кислорода по Винклеру. В этом варианте были учтены практически все потенциальные ошибки выявленные раннее. В совместной работе Кэррит и Карпентер дополнили эту методику поправкой на учет растворенного в реактивах кислорода (0.018 мл/л). Экспериментально измеренная в работе величина несколько отличалась и составляла 0.011 мл/л.

При определении точностных характеристик химического метода Винклера исследователи столкнулись с проблемой точного задания концентрации растворенного кислорода. Для этого использовались насыщение воды воздухом или кислородом при заданной температуре, стандартная добавка раствора кислорода в обезкислороженную воду, электрохимическое генерирование кислорода, использование альтернативных инструментальных методов определения кислорода. Не смотря на долгую историю этой проблемы и многочисленные работы, окончательное решение пока не найдено и вопрос по-прежнему остается открытым. Наиболее популярным способом задания концентрации кислорода в воде был и остается до сих пор - процедура насыщения воды кислородом воздуха при фиксированной температуре. Однако отсутствие единообразия процедуры (объем раствора, условия перемешивания, способ и скорость продувания кислорода) приводит к значительным ошибкам, достигающим 2%. В большей мере это проявлялось при работе в области меньше 5 мгО2/л.

Опираясь на высокоточное приготовление растворов кислорода, внесением стандартной добавки в обезкислороженую воду, Карпентеру удалось достигнуть правильности 0.1% и воспроизводимости 0.02% на уровне 5 мгО2/л для варианта метода Винклера с фотометрическим титрованием. В Таблице 1 показана погрешность классического варианта метода Винклера на различных уровнях концентрации растворенного кислорода. Таблица 1 составлена по опубликованным результатам полевых и лабораторных определений.

Таблица 1. Погрешность метода Винклера в чистых водах

мгО2/л

погрешность

0.05

~30%

0.2-0.3

10-20%

0.8-1.7

3-5%

3 - …

~1%, но при тщательной работе возможно снижение до 0.1%.

Другим важным параметром, характеризующим возможности метода является нижняя граница определения. В литературе цитируется два значения нижней границы: ~0.05 и ~0.2 мгО2/л. Понятно, что предел обнаружения может определяеться следующими критериями:

нарушение стехиометрии реакций, лежащих в химической основе метода Винклера

чувствительность йод-крахмальной реакции

концентрацией используемого раствора тиосульфата и разрешающяя способность бюретки

В работе Поттера показано, что даже на уровне 0.0007 (!) мгО2/л стехиометрия основополагающих реакций сохраняется. В этой же работе говорится, что основной причиной, определяющей нижний предел является чувствительность йод-крахмальной реакции, которая оценивается как ~2·10-6Н (0.02-0.05 мгО2/л) [27, 29, 42, 43]. Таким образом можно сказать, что уровень 0.05 мгО2/л - это нижний предел обнаружения, а уровень 0.2 мгО2/л можно трактовать, как нижний предел метода (или значимости определения), т.е. тот уровень, на котором погрешность достигает 10-20% и более.

Иодометрический метод

ИСО 5813 устанавливает иодометрический метод определения растворенного в воде кислорода (метод Винклера, модифицированный для исключения некоторых помех).

Иодометрический метод применим для всех типов вод, свободных от мешающих веществ и содержащих растворенный кислород в концентрации более чем 0,2 мг/л вплоть до двойного насыщения кислородом (приблизительно 20 мг/л). Легко окисляемые органические вещества, такие как танины, гуминовые кислоты и лигнины, оказывают мешающие влияния. Окисляемые соединения серы, такие как сульфиды и тиомочевина, также оказывают мешающее влияние. В присутствии этих веществ предпочтительно использовать метод электрохимического датчика по ИСО 5814.

Нитриты в концентрации до 15 мг/л не оказывают мешающего воздействия при определении, потому что их связывают добавлением азида натрия в ходе анализа.

В присутствии окисляющих или восстанавливающих веществ необходимо применять модифицированные методы, которые описаны в данном разделе.

В присутствии взвешенных веществ, способных фиксировать или поглощать иод, можно использовать модифицированный метод, описанный ниже.

Сущность метода заключается в реакции растворенного в воде кислорода пробы со свежеосажденной гидроокисью марганца (II), которая образуется при добавлении гидроксида натрия или калия к сульфату марганца

Подкисление и окисление иодида соединением марганца более высокой валентности приводит к выделению иода в эквивалентных кислороду количествах. Выделенный иод определяют титрованием тиосульфатом натрия.

Реактивы

Раствор серной кислоты. Осторожно добавляют 500 мл концентрированной ой кислоты (р=1,84) к 500 мл воды, все время перемешивая. В присутствии валентного III железа используют фосфорную кислоту (Н3РО4), р=1,70.

Раствор серной кислоты (2), c (l/2H2SO4)=2 моль/л.

Щелочной раствор иодазида. Следует учитывать, что азид натрия сильно ядовит. Если известно, что нитриты отсутствуют, этот реактив может быть исключен.

Растворяют 35 г. гидроксида натрия (NaOH) или 50 г. гидроксида калия (КОН) и 38 г. иодида калия (KI) или 27 г. иодида натрия (Nal) в приблизительно 50 мл воды Отдельно растворяют 1 г азида натрия (NaN3) в нескольких миллилитрах воды Смешивают два раствора и разбавляют до 100 мл. Запасной раствор хранят в закрытой склянке из темного стекла.

После растворения и подкисления этот реагент не должен окрашиваться в присутствии раствора индикатора.

Раствор безводного сульфата марганца (II), 340 г./л (или раствор моногидрата фосфата марганца, 380 г./л). Можно использовать раствор тетрагидрата хлорида марганца (II), 450 г./л. Растворы фильтруют, если они непрозрачны.

Иодат калия, c(KIO3)=10 ммоль/л, стандартный раствор. Высушивают несколько граммов иодата калия (КIO3) при температуре 180 С. Взвешивают 3,567±О, ОО3 г и растворяют в воде. Разбавляют до 1 л. Отбирают 100 мл и разбавляют водой до 1 л в мерной колбе.

Тиосульфат натрия, стандартный раствор, c(Na2S2O3)=10 ммоль/л.

Приготовление. Растворяют 2,5 г пентагидрата тиосульфата натрия (Na2S2O3 5Н2О) свежекипяченой и охлажденной воде. Добавляют до 0,4 г гидроксида натрия (NaOH) разбавляют до 1 л.

Хранят раствор в темной стеклянной бутыли.

Установление титра. Растворяют в конической колбе приблизительно 0,5 г иодата калия или натрия (KI или NaI) в 100-150 мл воды, Добавляют 5 мл раствора ой кислоты (2 моль/л).

Страницы: 1, 2, 3, 4, 5, 6



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.