на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Обращенная газовая хроматография: физико-химические основы метода, применение, современное аппаратурное оформление

Обращенная газовая хроматография: физико-химические основы метода, применение, современное аппаратурное оформление

«Обращенная газовая хроматография: физико-химические основы метода, применение, современное аппаратурное оформление»

Содержание

Глава 1. Газовая хроматография

Глава 2. Обращенная газовая хроматография

Глава 3. Применение обращенной газовой хроматографии

Глава 4. Современное оборудование

Литература

ГЛАВА 1. ГАЗОВАЯ ХРОМАТОГРАФИЯ

Газовая хроматография это, прежде всего универсальный метод качественного и количественного анализа сложных смесей и способ получения отдельных компонентов в чистом виде. Газовая хроматография (ГХ) находит также широкое применение для изучения адсорбционных явлений, термодинамики растворов, фазовых переходов, в кинетике, катализе и в других областях науки.

В газохроматографическом процессе проявляются малейшие различия в физико-химических свойствах компонентов системы благодаря многократному повторению процессов распределения вещества (сорбата) между неподвижной фазой (жидкость или твердое тело, общий термин - сорбент) и подвижной фазой (газ-носитель). Положение и форма хроматографических пиков дают информацию, необходимую для полной аналитической характеристики веществ, и допускают термодинамическую трактовку. В отличие от аналитической хроматографии, в которой главной задачей является разделение хроматографических пиков с помощью оптимального выбора сорбента и условий эксперимента, при использовании метода ГХ в физической химии применяют сорбаты различного химического строения и объектом исследования является взаимодействие в системе сорбат-сорбент. Из величин сорбции получают сведения о физико-химических характеристиках твердых и жидких веществ, включая адсорбенты, катализаторы, полимеры, жидкие кристаллы и, в том числе, лекарственные препараты. В этом случае метод газовой хроматографии получил специальное название - «обращенной газовой хроматографии». В газо-жидкостной хроматографии сорбентом, как правило, является жидкость, предварительно нанесенная на инертный твердый носитель или на стенки капилляра. В современной газовой хроматографии наиболее широкое применение находят капиллярные колонки с химически привитыми жидкими фазами. При этом сорбат взаимодействует с жидкостью (неподвижной жидкой фазой), растворяясь в последней. В газо-адсорбционной хроматографии неподвижной фазой является твердое тело (получило название адсорбент). В этом случае исследуемый сорбат принято называть адсорбатом.

В хроматографе газ протекает через хроматографическую колонку с конечной скоростью и, строго говоря, в ней не успевает установиться термодинамическое равновесие. Однако при благоприятных условиях (выбор оптимальной скорости подвижной фазы, температуры, размера пор материала, размера и формы зерен сорбента, их упаковки и других условий) реальные процессы в хроматографической колонке приближаются к равновесным. Такие процессы описываются уравнениями теории равновесной хроматографии, и наблюдается хорошее совпадение результатов газохроматографического исследования и данных, полученных калориметрическими или статическими методами [3, 4].

Исключительное значение метод ГХ имеет при исследовании чрезвычайно малых количеств сорбата (нанограммы и даже пикограммы), когда другие классические статические методы практически непригодны.

ГЛАВА 2. ОБРАЩЕННАЯ ГАЗОВАЯ ХРОМАТОГРАФИЯ

Исследование теоретических основ процесса сорбции летучих веществ неподвижной фазой для установления корреляций между условиями процесса и параметрами получаемых пиков позволило оценить физико-химические величины, характеризующие распределение вещества между двумя фазами и силами взаимодействия компонентов пробы и жидкой фазы колонки, по данным хроматографических опытов. Предсказанное Д. Е. Мартиным в 1955 г. неаналитическое применение газовой хроматографии в настоящее время стало мощным средством развития теории сорбции, термодинамики и других областей физической химии благодаря сравнительной простоте используемой аппаратуры, универсальности метода и высокой точности получаемых результатов. Газовая хроматография широко используется и в химии высокомолекулярных соединений, в частности в тех областях, где формы ее применения являются традиционными (определение примесей в мономерах и растворителях для полимеризации, изучение летучих продуктов деструкции и др.). Случаи применения метода газовой хроматографии в химии полимеров обобщены в книге В. Г. Березкина, В. Р. Алишоева и И. Б. Немировской «Газовая хроматография в химии полимеров».

В последние годы для исследования полимеров находит применение неаналитический вариант газовой хроматографии, так называемый метод обращенной газовой хроматографии, где объектом исследования является неподвижная фаза. Термин «обращенная газовая хроматография» предложен в 1966 г. Девисом с сотрудниками и Березкиным. Поскольку в обращенной газовой хроматографии используются непосредственное взаимодействие стандартных хроматогра-фируемых летучих соединений с исследуемой полимерной фазой и установление определенных связей между характеристиками этих летучих соединений со свойствами полимерной фазы, то этот метод может рассматриваться как прямой метод исследования высокомолекулярных соединений.

Метод обращенной газовой хроматографии для исследования полимеров получил развитие благодаря работам Гиллета с сотрудниками, показавшими возможность его применения для определения температур стеклования или плавления, степени кристалличности, параметров термодинамического взаимодействия Флори -- Хаггинса для систем полимер -- растворитель, а также для исследования кинетики кристаллизации полимеров из расплава.

Основы метода обращенной газовой хроматографии

1. Основные положения теории газовой хроматографии как метода физико-химических измерений.

В основе физико-химических измерений с помощью газовой хроматографии лежит связь между значениями определяемых величин с параметрами хроматографических зон. Так, время удерживания максимума зоны компонента является функцией его коэффициента активности или адсорбции, что позволяет определить коэффициенты активности и другие термодинамические характеристики жидких и твердых тел, используемых в качестве неподвижных фаз. Исходя из температурной зависимости удерживаемых объемов, можно найти важнейшие характеристики смешения -- энтальпию и энтропию.

Основным параметром, определяемым в газовой хроматографии, является время удерживания (или удерживаемый объем) сорбата неподвижной фазой.

Время удерживания сорбата в хроматографической колонке есть функция коэффициента распределения вещества между жидкой и газовой фазами, функция коэффициентов адсорбции на поверхности газ -- жидкость, газ -- твердое тело и жидкость -- твердое тело, величины объема колонки, занятой газом и неподвижной фазой, скорости газа-носителя, среднего давления в колонке и величиной перепада давления на входе и выходе из колонки. Под действием потока газа-носителя молекулы сорбата перемещаются вдоль колонки. Скорость этого перемещения обратно пропорциональна константе распределения их между газовой и неподвижной фазами. Количественно процесс элюирования из колонки может быть описан при кинетическом рассмотрении элементарных процессов движения молекул в колонке. Линейная скорость максимума зоны компонента в данной точке колонки. В последние годы в физической химии полимеров широкое распространение получил метод обращенной газовой хроматографии, основанный на неаналитическом применении газоадсорбционной и газожидкостной хроматографии. Термин «обращенная газовая хроматография» был предложен в 1966 г. одновременно Дэвисом с сотрудниками и В. Г. Березкиным. Название этого метода обусловлено тем, что с его помощью в отличие от классической газовой хроматографии решается «обратная» задача, т. е. исследуются свойства неподвижной фазы. Для исследования свойств неподвижных фаз полимеров этот метод начал широко применяться после выхода в свет в 1969 г', работы Смидсрода и Гиллета [9], которые показали, что, используя его, можно непосредственно оценивать параметры термодинамического взаимодействия полимер -- растворитель, такие, как коэффициенты активности, парциальные избыточные свободные энергии, энтальпии и энтропии смешения. В дальнейшем благодаря работам Гиллета с сотрудниками, показавшими, что этим методом можно вычислять температуры стеклования и плакления, степень кристалличности полимеров, исследовать кинетику кристаллизации и главным образом определять параметры термодинамического взаимодействия полимер -- растворитель, методом обращенной газовой хроматографии было исследовано большое число полимеров и их растворов в низкомолекулярных растворителях. Особенно интенсивно этот метод стали использовать в последние годы для изучения термодинамических свойств смесей полимеров. Установлено, что он может успешно применяться для оценки поверхностных свойств полимеров, определения параметров растворимости, степени кристалличности смесей полимеров и сополимеров, влияния наполнителей на термодинамические свойства бинарных полимерных систем

Предложены модели для описания газохроматографических процессов при различных физических состояниях неподвижной полимерной фазы, позволившие существенно увеличить точность эксперимента и интерпретацию получаемых экспериментальных данных, например при оценке температур стеклования, степени кристалличности, параметров термодинамического взаимодействия в системах полимер -- растворитель, полимер -- полимер и др. Поскольку значительная часть этих сведений приведена в основном в оригинальных публикациях, а в последние годы метод обращенной газовой хроматографии из-за простоты и доступности находит все большее применение при исследовании полимер.

ГЛАВА 3. ПРИМЕНЕНИЕ ОБРАЩЕННОЙ ГАЗОВОЙ ХРОМАТОГРАФИИ

О методиках исследования взаимодействия волокнообразующих пеков с органическими растворителями методом обращенной газовой хроматографии

Метод обращенной газовой хроматографии (ОГХ) используется для определения температур фазовых переходов, степени кристалличности полимеров и термодинамических параметров взаимодействия "полимер-растворитель", а также для исследования кинетики кристаллизации из расплава [1,2]. Знание аналогичных характеристик для волокнообразующих пеков, коксов и промежуточных карбонизующихся масс, образующихся в процессах пеко - и коксообразования, представляет научный и практический интерес [3].

Эффективность применения ЭДОСа для модификации водно - дисперсионных материалов Общим направлением технического прогресса в настоящее время является переход на энергосберегающие технологии и ужесточение требований к защите окружающей среды. Одним из эффективных путей решения указанных проблем в строительстве является расширение применения вододисперсионных клеящих и лакокрасочных полимерных материалов. [1, 2]. Они отличаются экологической полноценностью, экономичностью и высокой пожаростойкостью. При использовании вододисперсионных клеев и красок снижаются капитальные затраты на вентиляцию, значительно облегчается очистка сточных вод, не происходит загрязнения окружающей среды парами органических растворителей, улучшаются санитарно-гигиенические условия применения.

В то же время вододисперсионные материалы отличает невысокая устойчивость в процессе хранения и эксплуатации из-за возможности образования коагулюма [З]. Этого недостатка не лишены как поливинилацетатные водные дисперсии (ПВАД), так и латексы на основе синтетических каучуков.

Существующий ассортимент промышленных пластификаторов ПВАД ограничен дорогостоящими и высокотоксичными эфирами фталевой кислоты, которые водонерастворимы и трудно совмещаются с водными дисперсиями, а в составе латексных композиций полярные пластификаторы вообще практически не используются. Это делает перспективным применение в рецептурах вододисперсионных материалов пластификатора ЭДОС, отличающегося поверхностной активностью и водорастворимостью [5].

Этот пластификатор представляет собой смесь производных 1,3 диоксана, основным компонентом которого является симметричный формаль 4 метил -4 гидроксиэтил -1,3 диоксана [б].

Установлено [5], что с ростом содержания гидроксильных групп в ЭДОСе, растворимость его в воде и водных растворах неиногенных ПАВ уменьшается, а в водных растворах анионактивных эмульгаторов - увеличивается. Традиционный пластификатор ПВАД - дибутилфталат (ДБФ) характеризуется низкой растворимостью во всех исследованных водных средах. В то же время, коллоидная растворимость ЭДОСа (солюбилизация) закономерно растет с увеличением концентрации в нем гидроксилсо держащих компонентов [7]. Хорошая водорастворимость ЭДОСа позволяет исследовать его свойства по стандартным для ПАВ методикам [5]. Поверхностную активность ПАВ, согласно литературным данным [8], оценивают по изотерме поверхностного натяжения (ПН), т.е. зависимости ПН раствора от его концентрации. Кроме того, изотермы поверхностного натяжения дают информацию о способности ПАВ к мицеллобразованию и энергии адсорбции.

Изучение пластификатора ЭДОС с этих позиций показало [9], что его поверхностное натяжение экстремально зависит от содержания гидроксильных групп. Независимо от компонентного состава ЭДОС характеризуется критической концентрацией мицеллобразования, т. е. ведет себя как мицеллобразующий ПАВ [7]. Изотерма поверхностного натяжения ЭДОСа имеет один перегиб, характерный для неионогенных ПАВ с полярными группами [8]. По величине предельной адсорбции ЭДОС приближается к известным эмульгаторам анионактивного и неионогенного типа [5, 7].

Страницы: 1, 2



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.