на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Перспективные композиты XXI века на основе органических и неорганических полимеров. Новые металлические сплавы, приоритетные технологии

Перспективные композиты XXI века на основе органических и неорганических полимеров. Новые металлические сплавы, приоритетные технологии

Перспективные композиты XXI века на основе органических и неорганических полимеров. Новые металлические сплавы, приоритетные технологии

ИССЛЕДОВАНИЕ СВОЙСТВ ЗАЛИВОЧНЫХ ГИДРОГЕЛЕЙ

И.Н. Бурмистров, Л.Г. Панова

Энгельсский технологический институт СГТУ

Необходимость создания технически эффективных, экономически выгодных, экологически безопасных и приемлемых технологически огнестойких светопрозрачных конструкций для строительного остекления в настоящее время не вызывает сомнения. Особое внимание следует обратить на слово «конструкция», так как достижение высокой степени огнестойкости возможно только при оптимальном сочетании параметров всех деталей в конструкции. К ним относят специальную раму, огнестойкий стеклопакет, состоящий из двух или более силикатных стёкол с полимерными или гелевыми прослойками, и специальные средства крепежа.

Конструкции, соответствующие классу остекления не ниже EI30, должны останавливать распространение всех составляющих пожара: огня, дыма и теплового излучения. Для достижения этой цели перспективно использовать триплексы из силикатного стекла и заливочных полимерных гелей. Применяемый гель должен реагировать на повышение температуры при пожаре. При этом положительный эффект достигается за счёт ряда факторов: испарение содержащейся в геле воды охлаждает конструкцию; структурирование полимерной составляющей образует каркас, удерживающий осколки стекла, и обеспечивает целостность конструкции; вспенивание геля обеспечивает высокую степень теплоизоляции уцелевшей части конструкции от высоких температур.

Данная работа посвящена разработке заливочных гелей для создания противопожарных многослойных светопрозрачных строительных конструкций.

В работе проведён анализ составов на основе следующих компонентов: состав «г1» - поливиниловый спирт (ПВС) и фосфорная кислота; состав «г2» - смесь аммониевых солей акриловых олигомеров, олигосахариды, водорастворимые силикаты натрия.

Основной задачей является максимально высокое содержание карбонизированного остатка сжигаемого геля и хорошая адгезия кокса к силикатному стеклу; а также достижение наибольшей вязкости композиции при температуре разложения и оптимальное количества летучих продуктов, вспенивающих состав.

На начальном этапе исследования был определён оптимальный состав гелей. Составы с лучшими реологическими свойствами приведены в таблице 1.

Таблица 1. Составы гелей г1, г2

Наименование

компонента

A

B

C

D

E

F

г1

10.72

34.81

54.47

-

-

-

г2

-

-

64,39

3,04

25,40

7,17

В качестве основных методов исследования рассматриваемых составов были выбраны метод термогравиметрического анализа, инфракрасной спектроскопии и масштабные испытания готовых светопрозрачных конструкций в огневой печи. Методом инфракрасной спектроскопии установлено отсутствие для всех составов химических реакций между компонентами гелей. На основе инфракрасных спектров поглощения доказано, что в анализируемых составах основная масса воды связана полимерным гелем. Это подтверждается, по данным TG ТГА также повышенной температурой удаления воды из геля при его разложении.

Данные ТГА-анализа показывают, что разложение гелей протекает в две стадии. На первой стадии наблюдается испарение воды и разрушение гелевой структуры, при этом образуется эластичный клейкий остаток. Энергия активации этого процесса (определяли по данным DTG) для геля г1: Е1-1 = 130,30 кДж/моль. Процесс протекает в интервале температур 80 - 200 0С. Процесс удаления воды облегчается снижением вязкости состава на начальной стадии нагревания. На второй стадии протекают процессы окисления полимерной матрицы и образования карбонизованного остатка. Энергия активации процесса Е1-2 = 123,10 кДж/моль. Процесс протекает в интервале температур 300 - 900 0С.

В геле г2 доля связанной воды значительно больше, по сравнению с гелем г1. Это объясняет смещение процесса удаления воды в область более высоких температур. Температурный интервал удаления воды и процессов структурирования карбонизованного слоя 100 - 340 0С. Энергия активации процесса Е2-1 = 142,10 кДж/моль. Процесс деструкции карбонизованного слоя протекает в интервале температур 380 - 5600С, энергия активации процесса Е2-2 = 602,99 кДж/моль.

Столь существенные различия в протекании второй стадии процесса в геле г1 и г2 объясняются различным механизмом протекания этих процессов. Доля полимерной матрицы в геле г1 составляет 10,72%. Процесс её деструкции протекает в присутствии образующихся в геле, под воздействием высоких температур, полифосфорных кислот, которые значительно снижают скорость разложения углеводородных соединений за счёт образования защищающих окисляющееся вещество плёнок полифосфорных кислот и нейтрализации активных радикалов оксидами фосфора. Процесс разложения, кипения и возгонки соединений фосфора продолжается до 9000С. Доля полимерной матрицы в геле г2 составляет 3,04%. В геле отсутствуют активные антипирены, поэтому процесс деструкции протекает в более узком интервале температур и завершается при более низкой температуре.

С целью оценки пригодности составов оценили огнестойкость конструкции на основе изучаемых гелей по ГОСТ 30247.0-94.

Протоколы испытаний приведены на рис. 1 и 2. Согласно проведённым испытаниям выбранные составы соответствуют классу противопожарной безопасности для геля г1 EI20, для геля г2 EI60 [1].

Рис. 1. Данные испытания многослойной конструкции на основе геля г1: 1-температура внутри печи по ГОСТ; 2-фактическая температура внутри печи; 3-температура наружного стекла

Рис. 2. Данные испытания многослойной конструкции на основе геля г2: 1-температура внутри печи по ГОСТ; 2-фактическая температура внутри печи; 3-температура наружного стекла

УДК 678.5

БАЗАЛЬТОПЛАСТИКИ НА ОСНОВЕ ПОЛИЭТИЛЕНА

И ПОЛИПРОПИЛЕНА

Т.П. Гончарова, Ю.А. Кадыкова, С.Е. Артеменко

Энгельсский технологический институт СГТУ

Базальтовые волокна являются эффективным армирующим наполнителем полимерных композиционных материалов (ПКМ) [1-3] и по своим технологическим и экономическим характеристикам успешно конкурируют с традиционными наполнителями - стеклянными и асбестовыми волокнами. Замена этих волокон базальтовыми позволяет создать ПКМ с высокими физико-механическими, эксплуатационными характеристиками и меньшей себестоимостью.

На кафедре «Химическая технология» СГТУ ведется разработка новой технологии армирования полиолефинов базальтовой ватой. Цель работы заключается в создании на основе полиэтилена и полипропилена ПКМ, обладающих необходимым комплексом свойств для различного практического использования. Изучаются факторы, влияющие на прочность, долговечность и другие характеристики ПКМ на основе полиолефинов, армированных базальтовой ватой. Формование осуществляется методом прямого прессования при температуре +1150С, давлении 5 МПа и продолжительности прессования 50 с.

В качестве полимерной матрицы использовали полиэтилен ПЭ-15803-020 и полипропилен ПП-01003, как первичные, так и вторичные; в качестве армирующей системы - некондиционную (отработанную) базальтовую вату (производства г. Брянска). Оптимальная степень наполнения полимера базальтовой ватой (БВ) составляла 15% (табл.1). При более высокой степени наполнения полимера БВ повышается дефектность материала и снижаются его прочностные характеристики.

Из табл. 1 видно, что все исследуемые физико-механические свойства первичных ПЭ и ПП повышаются при введении в полимерную матрицу 15% базальтовой ваты: р на 63-74%, i на 43-75%, твердость на 69-76 % .

Важно, что при использовании в качестве связующего вторичных полиолефинов физико-механические свойства снижаются незначительно (табл.2).

Таблица 1

Физико-механические характеристики БП на основе ПЭ и ПП, армированных 15% базальтовой ваты

ПКМ

Плотность, кг/м3

Разрушающее напряжение при растяжении, МПа

Разрушающее напряжение при изгибе, МПа

Твердость по Бринеллю, МПа

ПЭ

910/990

17/28

20/35

25/44

ПП

920/980

30/49

30/43

33/56

Примечание: в числителе ненаполненный материал; в знаменателе - наполненный 15% базальтовой ваты

Таблица 2

Сравнительные физико-механические характеристики БП, на основе первичного и вторичного ПЭ и ПП, армированных 15% базальтовой ваты

ПКМ

Плотность, г/см3

Разрушающее напряжение при растяжении, МПа

Разрушающее напряжение при изгибе, МПа

Твердость по Бринеллю, МПа

ПЭ

0,99/0,97

28/25

35/32

44/41

ПП

0,98/,097

49/44

43/40

56/54

Примечание: в числителе первичный ПЭ и ПП, в знаменателе - вторичный ПЭ и ПП, наполненные 15% базальтовой ваты

Таким образом, введение базальтовой ваты в термопласты дает возможность получать ПКМ с достаточно высокими механическими свойствами, а также эффективно использовать в качестве полимерной матрицы вторичные полиолефины.

УДК 541.64:593.199

СИНТЕЗ ВОДОРАСТВОРИМЫХ ПРОИЗВОДНЫХ

ФУЛЛЕРЕНА С60

И.Ф. Гунькин, В.Н. Целуйкин

Энгельсский технологический институт СГТУ

Введение фуллеренов в полимеры расширяет возможности синтеза новых полимерных композиционных материалов, обладающих самыми разнообразными свойствами. В результате введения фуллеренов в полимеры образуются соединения с ковалентными связями или комплексы донорно-акцепторного типа. Для получения таких систем в основном используется фуллерен С60 и гораздо меньше фуллерен С70 или их смеси и различные мономеры или готовые полимерные соединения.

Поскольку многие производные фуллерена С60 проявляют высокую физиологическую активность [1], одним из динамично развивающихся направлений химии фуллеренов является синтез физиологически активных веществ на основе фуллерена С60 [2]. Однако, молекула С60 гидрофобна и растворимость фуллерена С60 в воде составляет 1,3•10-11 мг/мл [3], что сильно мешает изучению его физиологической активности. Получение водорастворимых фуллеренов имеет важное значение для фармакологии; изучение реакций фуллеренов в воде представляет также и самостоятельный интерес для химической науки.

В принципе можно реализовать два подхода при получении водорастворимых форм фуллерена С60. Первый подход связан с применением законов коллоидной химии. Известно, что растворы поверхностно-активных веществ (ПАВ) могут переводить нерастворимые в воде органические соединения в коллоидное состояние или солюбилизировать. В результате такой солюбилизации, например, в присутствии додецилсульфата натрия, образуются коллоидные растворы фуллерена С60 в воде. Растворимость фуллерена С60 можно также увеличить при комплексообразовании его с водорастворимыми полимерами, например, поливинилпирролидоном (ПВП) [4-8]. При комплексообразовании фуллерена С60 с ПВП протекает одновременно обволакивание сферы С60 цепями ПВП, при этом достигается частичная стабилизация и увеличение растворимости в воде.

Второй подход при получении водорастворимых форм фуллерена С60 связан с модификацией фуллереновой сферы. Известно, что связи (С - С) фуллереновой сферы обладают ненасыщенным характером и диенофильны [9]. Поэтому можно осуществить по этим связям функционализацию фуллерена С60 диенами и нуклеофильными агентами, имеющими различные гидрофильные составляющие. При этом возникают аддукты, растворимость которых в воде гораздо выше самого фуллерена С60. Таким образом, к фуллерену С60 можно привить «фармакофорные» группы и получить также дополнительную физиологическую активность.

Страницы: 1, 2, 3, 4



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.