на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Поливинилхлорид

Поливинилхлорид

16

1. Поливинилхлорид

Поливинилхлорид - синтетический термопластичный полярный полимер. Продукт полимеризации винилхлорида. Твердое вещество белого цвета. Выпускается в виде капилярно-пористого порошка с размером частиц 100-200 мкм, получаемого полимеризацией винилхлорида в массе, суспензии или эмульсии. Порошок сыпуч и хорошо перерабатывается. На основе поливинилхлорида получают жесткие (винипласт) и мягкие (пластикат) пластмассы, пластизоли (пасты), поливинилхлоридное волокно. Винипласт используется как жесткий конструкционный материал, применяемый в строительстве в виде погонажа, профилей, труб. Пластикат применяется для изготовления пленок, шлангов, клеенки, линолеума.

Обычное обозначение поливинилхлорида на российском рынке - ПВХ, но могут встречаться и другие обозначения: PVC (поливинилхлорид), PVC-P или FPVC (пластифицированный поливинилхлорид), PVC-U или RPVC или U-PVC или UPVC (непластифицированный поливинилхлорид), CPVC или PVC-C или PVCC (хлорированный поливинилхлорид), HMW PVC (высокомолекулярный поливинилхлорид). Не горит на воздухе, но обладает малой морозостойкостью (-15 °C). Нагревостойкость: +65 °C.

ПВХ - это старейший строительный материал. Сочетание «Профиль - ПВХ» уже достаточно прочно вошло в нашу жизнь, при этом, мало кто знает (конечно кроме химиков), что обозначают эти буквы. ПВХ - это аббревиатура полезнейшего материала - поливинилхлорида.

2. Открытие ПВХ и развитие промышленного производства

История открытия поливинилхлорида очень интересна и, при этом, драматична. Его открывали и благополучно забывали, затем вновь открывали. И так несколько раз. В результате это довольно простое соединение имеет четырех создателей, а признание к нему пришло спустя век.

Давно известно, что учеными или исследователями, когда они что-то изобретают новое (прибор или материал), движут совсем не соображения удобства и экономии, а желание познать или создать это новое на более высоком уровне. Тоже самое было и с французским химиком и горным инженером Реньо, первым получившим поливинилхлорид. Это произошло в 1835 г., когда Анри Виктор Реньо работал в Гиссене, в лаборатории Юстуса фон Либигса. В растворе, содержащем винилхлорид, который находился несколько дней в пробирке на подоконнике, произошли существенные изменения: образовался порошок белого цвета. Скорее всего, этому способствовал солнечный свет, вступивший в реакцию с раствором. Свои испытания Реньо продолжил в Лионе (Франция). Он пробовал проводить с полученным порошком разные опыты, но ни вызвать какой-либо дополнительной реакции, ни растворить его Реньо так и не смог. В результате ученый, записав и опубликовав свои наблюдения, больше не стал заниматься этим, полученным случайно, веществом. Таким образом, Анри Виктор Реньо впервые получил поливинилхлорид, сам того не зная.

Впервые более подробно продукт полимеризации винилхлорида был исследован в 1878 году, однако результаты этих исследований достоянием промышленности так и не стали. Произошло это только в следующем столетии.

В 1912 г. начались новые поиски возможностей для промышленного выпуска поливинилхлорида (ПВХ). Ученый Фриц Клатте, служащий немецкой химической фирмы «Грайсхайн Электрон», соединил ацетилен с хлороводородом и, получившийся раствор, поставил на полку. Через небольшой промежуток время он увидел, выпавший, осадок. Так как химия, в то время, уже достаточно знала о строении вещества, ученый понял, что это полимер (винилхлорид). В 1913 году Фрицем Клатте первым был получен патент на производство поливинилхлорида (ПВХ). Он рассчитывает ПВХ использовать вместо целлулоида, так как по сравнению с ним ПВХ трудно воспламенялся. Начало Первой мировой войны помешало Фрицу Клатте заняться более подробно свойствами ПВХ и возможностями его применения, производство было замороженно. Несмотря на это, Клатте заслуженно считается родоначальником промышленного производства поливинилхлорида.

В крупных масштабах производство поливинилхлорида началось в Германии в тридцатые годы. В 1931 г. объединение pASF выпустило первые тонны ПВХ. В 1938 г. в немецком городе Биттерфельде была запущенна линия, предназначенная для производство полторы тысячи тонн поливинилхлорида в год. Фирмой вещество было запатентовано в Германии, но применения практически ему так и не нашлось; в 1925 г. срок на патент истек. В это же время над получением полимера работает американский ученый Уолдо Силон. В 1926 г. ему удается получить поливинилхлорид и Силон вновь его описывает. В этом же году американская компания, в которой работал ученый, получает патент на поливинилхлорид, однако, в отличие от немцев, очень быстро придумывает способ его применения. Инициатива опять же происходит от Силона, порекомендовавшего делать из полимера занавески для ванн. Далее судьба ПВХ начала складываться очень и очень удачно: в 1931 г. концерн BASF запустил первое производство (многотонное) по выпуску продукции из поливинилхлорида, делали практически все - от детских бутылочек до деталей автомобиля.

После Второй мировой войны ПВХ приобрел статус самого массового материала для изготовления пленок, покрытий для пола, профилей, труб и многих других пластмассовых изделий.

В середине двадцатого века поливинилхлорид начали применять и для производства окон. Сначала в США, а затем и в Германии были получены патенты на первые оконные профили с использованием поливинилхлорида.

3. Строениe

Поливинилхлорид является продуктом полимеризации винилхлорида, химическая формула которого СН2-СНСl. В процессе полимеризации образуются линейные слаборазветвленные (разветвленность макромолекул составляет 2-5 на 1000 атомов углерода основной цепи) макромолекулы c элементарным звеном в виде плоского зигзага.

Характер связей между элементарными звеньями допускает несколько вариантов построения молекулярной цепи, что на практике, при промышленном получении поливинилхлорида, приводит к малой регулярности (синдиотактичности) его макромолекул: в одной макромолекуле реализуются сразу несколько вариантов связей элементарных звеньев, регулярные последовательности элементарных звеньев не создаются и промышленные образцы имеют невысокую степень кристалличности.

Поливинилхлорид характеризуется очень широким молекулярно-массовым распределением (полидисперсностью). Степень полимеризации для различных фракций полимера одной и той же марки может изменяться в несколько десятков раз (от 100 до 2500). Поэтому на практике молекулярную массу поливинилхлорида часто характеризуют не ее численным значением, а константой Фикентчера Kф, которую определяют по уравнению:

Кф= 1000*k

lg ?отн = [(75k2С)/(1+1,5kС)] + kС,

где ?отн - относительная вязкость при 25 °С, С - концентрация поливинилхлорида, обычно 0,5 или 1 на 100 мл растворителя (чаще всего циклогексанона или дихлорэтана). Величина Kф практически постоянна для растворов поливинилхлорида различных концентраций, незначительно зависит от температуры измерения, однако сильно изменяется с природой растворителя.

Химическая формула: [-CH2-CHCl-] n.

Физические свойства

Молекулярная масса 10-150 тыс.; Плотность - 1,35-1,43 г./см?. Температура стеклования 75-80 °C (для теплостойких марок до 105 °C), температура плавления - 150-220 °C.

При температурах выше 110-120 °C склонен к разложению с выделением хлористого водорода HCl.

Растворяется в циклогексаноне, тетрагидрофуране (ТГФ), диметилформамиде (ДМФА), дихлорэтане, ограниченно - в бензоле, ацетоне. Не растворяется в воде, спиртах, углеводородах; стоек в растворах щелочей, кислот, солей.

Предел прочности при растяжении - 40-50 МПа, при изгибе - 80-120 МПа. Удельное электрическое сопротивление - 1012-1013 Ом·м.

Тангенс угла потерь порядка 0,01-0,05.

Поливинилхлорид устойчив к действию влаги, кислот, щелочей, растворов солей, промышленных газов (например, NO2, Cl2), бензина, керосина, жиров, спиртов. Нерастворим в собственном мономере. Ограничено растворим в бензоле, ацетоне. Растворим в дихлорэтане, циклогексаноне, хлор- и нитробензоле. Физиологически безвреден

Чистый поливинилхлорид представляет собой роговидный материал, который трудно перерабатывается. Поэтому обычно его смешивают с пластификаторами. Свойства конечного продукта варьируются от жесткого до очень гибкого пластика в зависимости от процента добавленного пластификатора, который может достигать до 30% массы.

4. Получение и свойства ПВХ

Получают поливинилхлорид полимер. зацией винилхлорида (В.). Скорость процесса в растворе подчиняется кинетич. ур-нию для гомог. радикальной полимеризации. Однако поскольку поливинилхлорид не растворим в воде, полимеризация в массе мономера, а также в водной среде носит гетерофазный характер. Из-за низкой подвижности макрорадикалов в твердой фазе затруднено их взаимодействие и, следовательно, мала скорость обрыва полимерной цепи; в то же время константы скорости инициирования и роста цепи остаются такими же, как в гомог. среде. Поэтому с увеличением количества поливинилхлорида возрастает и общая скорость полимеризации (автокаталитический процесс). Скорость реакции увеличивается до степени превращения мономера 60-70%, затем начинает уменьшаться из-за его исчерпания. Тепловой эффект реакции 92,18 кДж/моль, энергия активации ок. 83,80 кДж/моль. Степень полимеризации в значительной, мере зависит от температуры, что объясняется склонностью к реакции передачи цепи. Температура полимеризации оказывает некоторое влияние и на степень кристалличности поливинилхлорида При температурах от -10 до 20 °C получают поливинилхлорид с повышенной синдиотактичностью и температурой стеклования до 105 °C.

Промышленное производство поливинилхлорида осуществляют тремя способами: 1) суспензионная полимеризация по периодической схеме. Раствор, содержащий 0,02-0,05% по массе инициатора (например, ацилпероксиды, диазосоединения), интенсивно перемешивают в водной среде, содержащей 0,02-0,05% по массе защитного коллоида (например, метилгидроксипропилцеллюлоза, поливиниловый спирт). Смесь нагревают до 45-65 °C (в зависимости от требуемой молекулярной массы поливинилхлорида) и заданную температуру поддерживают в узких пределах с целью получения однородного по молекулярной массе поливинилхлорида Полимеризация протекает в каплях, в ходе ее происходит некоторая агрегация частиц; в результате получают пористые гранулы поливинилхлорида размером 100-300 мкм. После падения давления в реакторе (степень превращения около 85-90%) удаляют непрореагировавший мономер, поливинилхлорид отфильтровывают, сушат в токе горячего воздуха, просеивают через сита и расфасовывают. Полимеризацию проводят в реакторах большого объема (до 200 м3); новые производства полностью автоматизированы. Удельный расход 1,03-1,05 т/т поливинилхлорида Преимущества способа: легкость отвода тепла реакции, высокая производительность, относительная чистота поливинилхлорида, хорошая совмещаемость его с компонентами при переработке, широкие возможности модификации свойств поливинилхлорида путем введения различных добавок и изменения параметров режима.

2) Полимеризация в массе по периодической схеме в две ступени. На первой реакционную смесь, содержащую 0,02-0,05% по массе инициатора, полимеризуют при интенсивном перемешивании до степени превращения около 10%. Получают тонкую взвесь частиц («зародышей») поливинилхлорида в мономере, которую переводят в реактор второй ступени; сюда же вводят дополнительные количествава мономера и инициатора и продолжают полимеризацию при медленном перемешивании и заданной температуре до степени превращения около 80%. На второй ступени происходит дальнейший рост частиц поливинилхлорида и их частичная агрегация (новых частиц не образуется). Получают пористые гранулы поливинилхлорида с размерами 100-300 мкм в зависимости от температуры и скорости перемешивания на первой ступени. Незаполимеризовавшийся мономер удаляют, поливинилхлорид продувают азотом и просеивают. Порошок сыпуч и легко перерабатывается. Преимущества перед суспензионным способом: отсутствие стадий приготовления водной фазы, выделения и сушки поливинилхлорида, в результате уменьшаются капиталовложения, энергозатраты и расходы на обслуживание. Недостатки: затруднены отвод тепла реакции и борьба с коркообразованием на стенках аппаратуры; образующийся поливинилхлорид неоднороден по молекулярной массе, его термостойкость ниже, чем у поливинилхлорида, полученного первым способом.

3) Эмульсионная полимеризацияпо периодической и непрерывной схеме. Используют растворимые в воде инициаторы (H2O2, персульфаты), в качестве эмульгаторов - ПАВ (напр., алкил- или арилсульфаты, сульфонаты). Радикалы зарождаются в водной фазе, содержащей до 0,5% по массе инициатора и до 3% эмульгатора; затем полимеризация продолжается в мицеллах эмульгатора. При непрерывной технологии в реактор поступают водная фаза и мономер. Полимеризация идет при 45-60 °C и слабом перемешивании. Образующийся 40-50%-ный латекс с размерами частиц поливинилхлорида 0,03-0,5 мкм отводится из нижней части реактора, где нет перемешивания; степень превращения составляет 90-95%. При периодической технологии компоненты - (водная фаза, мономер и обычно некоторое количествово латекса от предыдущих операций, так назsdftvsq затравочный латекс, а также другие добавки) загружают в реактор и перемешивают во всем объеме. Полученный латекс после удаления мономера сушат в распылительных камерах и порошок поливинилхлорида просеивают. Хотя непрерывный процесс высокопроизводителен, преимущество часто отдается периодическому, ибо им можно получить поливинилхлорида нужного гранулометрического состава (размеры частиц в пределах 0,5-2 мкм), что очень важно при его переработке. Эмульсионный поливинилхлорид значительно загрязнен вспомогательными веществами, вводимыми при полимеризации, поэтому из него изготовляют только пасты и пластизоли.

Страницы: 1, 2



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.