на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Прикладная фотохимия

Прикладная фотохимия

Российский химико-технологический

университет им. Д.И. Менделеева

Кафедра ХВЭ и РЭ

Реферат на тему

«Прикладная фотохимия»

Москва 2009г.

Введение

Фотохимия - наука о химических превращениях веществ под действием электромагнитного излучения: ближнего ультрафиолетового (~ 100-400 нм), видимого (400-800 нм) и ближнего инфракрасного (0,8 - 1,5 мкм).

Исследования химического действия излучения на различные вещества и попытки его теоретического истолкования начались с конца 18 в., когда Дж. Сенеби высказал предположение о том, что необходимая для достижения определенного химического эффекта продолжительность действия света обратно пропорциональна его интенсивности. В 19 в. параллельно происходило открытие новых реакций органических и неорганических веществ под действием света и физико-химическое исследование механизма и природы фотохимических реакций. В 1818 T. Гротгус отверг гипотезу о тепловом действии света, предположив аналогию в воздействии на вещество света и электричества и сформулировав принцип, согласно которому причиной химического действия может быть только тот свет, который поглощается веществом (закон Гротгуса). Дальнейшими исследованиями было установлено, что количество продукта фотохимической реакции пропорционально произведению интенсивности излучения на время его действия (P. Бунзен и Г. Роско, 1862) и что необходимо учитывать интенсивность только поглощенного, а не всего падающего на вещество излучения (Я. Вант-Гофф, 1904). Одно из важнейших достижений фотохимии - изобретение фотографии (1839), основанной на фотохимическом разложении галогенидов серебра.

Принципиально новый этап в развитии фотохимии начался в 20 в. и связан с появлением квантовой теории и развитием спектроскопии. А. Эйнштейн (1912) сформулировал закон квантовой эквивалентности, согласно которому каждый поглощенный веществом фотон вызывает первичное изменение (возбуждение, ионизацию) одной молекулы или атома. Вследствие конкуренции химических реакций возбужденных молекул и процессов их дезактивации, а также обратного превращения нестабильных первичных продуктов в исходное вещество, химические превращения претерпевает, как правило, лишь некоторая доля возбужденных молекул. Отношение числа претерпевших превращение молекул к числу поглощенных фотонов - квантовый выход фотохимической реакции. Квантовый выход, как правило, меньше единицы; однако в случае, например, цепных реакций он может во много раз (даже на несколько порядков) превышать единицу.

В России большое значение имели в начале 20 в. работы П.П. Лазарева в области фотохимии красителей и кинетики фотохимических реакций. В 40-е гг. А.Н. Терениным была высказана гипотеза о триплетной природе фосфоресцентного состояния, играющего важную роль в фотохимических реакциях, и открыто явление триплет-триплетного переноса энергии, составляющее основу одного из механизмов фотосенсибилизации химических реакций.

Использование достижений квантовой химии, спектроскопии, химической кинетики, а также появление новых экспериментальных методов исследования, в первую очередь методов изучения очень быстрых (до 10-12 с) процессов и короткоживущих промежуточных веществ, позволило развить детальные представления о законах взаимодействия фотонов с атомами и молекулами, природе возбужденных электронных состояний молекул, механизмах фотофизических и фотохимических процессов. Фотохимические реакции протекают, как правило, из возбужденных электронных состояний молекул, образующихся при поглощении фотона молекулой, находящейся в основном (стабильном) электронном состоянии. Если интенсивность света очень велика [более 1020 фотонов/ (с·см2)], то путём поглощения двух или более фотонов могут заселяться высшие возбужденные электронные состояния и наблюдаются двух- и многофотонные фотохимические реакции. Возбужденные состояния не являются лишь "горячей" модификацией их основного состояния, несущей избыточную энергию, а отличаются от основного состояния электронной структурой, геометрией, химическими свойствами, поэтому при возбуждении молекул происходят не только количественные, но и качественные, изменения их химического поведения. Первичные продукты реакций возбужденных молекул (ионы, радикалы, изомеры и т.п.) чаще всего являются нестабильными и превращаются в конечные продукты очень быстро.

Для качественного и количественного исследования продуктов используют всевозможные аналитические методы, в т. ч. оптическую спектроскопию и радиоспектроскопию. Для определения дозы облучения и квантовых выходов применяют актинометрию. Свойства короткоживущих возбужденных состояний обычно изучают методами оптической эмиссионной (флуоресцентной и фосфоресцентной) и абсорбционной спектроскопии. Особенно большое значение для исследования механизмов фотохимических реакций имеют импульсные методы: импульсный фотолиз, лазерная спектроскопия и др. Эти методы позволяют изучать кинетику первичных реакций возбужденных молекул, нестабильные промежуточные продукты и кинетику их превращений.

Практическое применение фотохимии связано с фотографией, фотолитографией и иными процессами записи и обработки информации, промышленным и лабораторным синтезом органических и неорганических веществ, синтезом и модификацией полимерных материалов, квантовой электроникой (фотохимические лазеры, затворы, модуляторы), микроэлектроникой (фоторезисты), преобразованием солнечной энергии в химическую.

Фотохимические процессы играют очень важную роль в природе. Фотосинтез обеспечивает существование почти всех живых организмов на Земле. Подавляющую часть информации об окружающем мире человек и большинство животных получают посредством зрения, механизм которого основан на фотоизомеризации родопсина, запускающей цепь ферментативных процессов усиления сигнала и тем самым обеспечивающей чрезвычайно высокую чувствительность (вплоть до регистрации отдельных фотонов). Озон образуется в верхних слоях атмосферы из кислорода под действием коротковолнового (<180 нм) излучения Солнца по реакции:

O2 + h O + O O3

Он поглощает излучение Солнца в области 200-300 нм, губительно действующее на живые организмы.

Фотосинтез

Первичный источник энергии почти для всех живых существ на Земле солнечный свет (исключение - хемотрофные организмы). Диапазон солнечного излучения, достигающего земной поверхности, называется видимым (белым) светом; его длина волны - 400 - 700 нм. Фотосинтезирующие организмы (зелёные растения, водоросли, цианобактерии) способны улавливать кванты солнечного света и трансформировать их в химическую энергию. Процесс фотосинтеза, заключительной реакцией которого является синтез углеводов из CO2, может быть суммирован следующим уравнением:

6CO2 + 6H2O + h? C6H12O6 + 6O2

Таким образом, в результате фотосинтеза происходит:

- восстановление световой энергией низкоэнергетической окисленной формы углерода (CO2) в высокоэнергетическую восстановленную форму углерода в составе углеводов, которые затем используются гетеротрофными организмами как источник энергии и углерода;

- образование молекулярного кислорода; эта реакция - единственный природный источник кислорода на Земле.

В процессе фотосинтеза выделяют световую и темновую фазы.

Световая фаза включает в себя три процесса:

- фотохимический процесс окислительного расщепления воды (фотоокисление):

2H2O 4H+ + 4e- + O2

- Энергия высокоэнергетических электронов воды используется специализированной мембранной системой для фосфорилирования АДФ и образования АТФ в системе фотосинтетического фосфорилирования;

- Часть энергии электронов восстанавливает НАДФ+ в реакции фотовосстановления:

НАДФ+ + 2e- + 2H+ НАДФН + Н+

В световых реакциях электроны переносятся по электронтранспортной цепи от одной окислительно-восстановительной системы к другой; фотосинтетический перенос электронов в энергетическом отношении подобен “подъёму в гору”. Возбуждение электронов за счёт энергии поглощённого света происходит в двух реакционных центрах (фотосистемах). Это белковые комплексы, в состав которых входит множество молекул хлорофилла (зелёный пигмент, содержащий ионы Mg2+) и других пигментов. Зелёный цвет хлорофилла обусловлен тем, что он поглощает преимущественно синий, частично - красный свет из солнечного спектра (т. е. отражает зелёный), т. к. эти фотоны оптимальны для фотосинтеза по энергии и интенсивности потока.

Темновая фаза - ферментативная утилизация и превращение СО2 в углеводы:

6СО2 С6Н12О6

Таким образом, НАДФН и АТФ, образующиеся в результате световых реакций, являются восстанавливающими и энергетическими агентами при фотосинтезе глюкозы из СО2 в темновой стадии.

В зелёных водорослях и высших растениях фотосинтез происходит в хлоропластах. Это органеллы, окружённые двумя мембранами и содержащие собственную ДНК. В их внутреннем пространстве, строме, находятся тилакоиды, уплощённые мембранные мешки; будучи сложены стопками, тилакоиды образуют граны. Внутреннее содержимое тилакоида называют люменом. Световые реакции катализируются ферментами тилакоидной мембраны, в то время как темновые реакции происходят в строме.

Фотография

Фотография - получение и сохранение статичного изображения на светочувствительном материале (фотоплёнке или фотографической матрице) при помощи фотокамеры.

В зависимости от принципа работы светочувствительного материала фотографию принято делить на три больших подраздела:

- Плёночная фотография -- основана на фотоматериалах, в которых происходят фотохимические процессы.

- Цифровая фотография -- в процессе получения и сохранения изображения происходят перемещения электрических зарядов (обычно в результате фотоэффекта и при дальнейшей обработке), но не происходит химических реакций или перемещения вещества.

- Электрографические и иные процессы, в которых не происходит химических реакций, но происходит перенос вещества, образующего изображение. Специального общего названия для этого раздела не выработано, до появления цифровой фотографии часто употреблялся термин «бессеребряная фотография».

Цифровая фотография

В цифровых фотоаппаратах светочувствительным элементом является ПЗС (прибор с зарядной связью) - матрица, состоящая из светочувствительных полупроводниковых элементов (множество кремниевых диодов). Падающий на матрицу свет заряжает каждый из элементов (пикселей) индивидуально; эта зарядка в дальнейшем соответствует электрическому импульсу, и таким образом получаются данные (в цифровой форме) об освещённости каждого из пикселей. Поскольку невозможно записать полностью информацию обо всем изображении, то в дальнейшем оно подвергается обработке программным обеспечением для восстановления потерянных данных и записывается на магнитных носителях. Таким образом, цифровая фотография есть комбинация работы ПЗС матрицы, программного обеспечения и карт памяти, заменяющих плёнку в аналоговом фотоаппарате.

ПЗС - матрица не больше ногтя на пальце (примерно 1.5 см по диагонали), содержащая несколько миллионов светочувствительных диодов, расположенных на поверхности матрицы в виде столбцов и колонок.

Поскольку диоды реагируют только на яркость, цифровой фотоаппарат может воспроизвести лишь чёрно-белое изображение. Для того чтобы преобразовать полученное чёрно-белое изображение в цветное, каждая ячейка (диод) покрывается красным, зелёным или синим цветовым фильтром; фильтры собраны в группы по четыре, причём на два зелёных приходится по одному красному и одному синему (такой тип организации фильтров называется "шаблоном Байера"). Подобная структура обусловлена тем, что человеческий глаз наиболее чувствителен к зелёному цвету. Полученная картинка состоит только из пикселей красного, синего и зелёного цвета - именно в таком виде записываются файлы формата RAW (сырой формат).

Схема ПЗС с цветовыми фильтрами

Для записи файлов JPEG и TIFF процессор камеры анализирует цветовые значения соседних ячеек и рассчитывает цвет пикселей. Этот процесс обработки называется цветовой интерполяцией, и он исключительно важен для получения качественных фотографий.

Плёночная фотография

В качестве светочувствительного элемента в химической (плёночной, аналоговой) фотографии обычно используется галогенсеребряная плёнка - гибкий прозрачный лист пластика, на который нанесена фотоэмульсия, содержащая зёрна галогенидов серебра; в состав фотоэмульсии входит также защитный коллоид (обычно - фотографическая желатина).

Светочувствительные зерна галогенидов серебра на фотоплёнке

Первая стадия фотографического процесса - экспонирование фотоматериала светом и появление скрытого изображения. Под действием фотонов происходит восстановление галогенидов серебра; в микрокристаллах возникают центры скрытого изображения (устойчивые группы атомов восстановленного серебра). Их размер оценивается в 10-7-10-8 см, то есть лежит за пределами возможностей разрешения оптических микроскопов (именно поэтому изображение и называется "скрытым").

Сущность проявления (визуализации) скрытого изображения сводится к химическому восстановлению галогенидов серебра на освещённых участках фотоматериала. Специфика этого процесса состоит в том, что восстановитель должен действовать на облученные светом микрокристаллы намного быстрее, нежели на необлученные. Значительно большая скорость восстановления облученных кристаллов связана с тем, что образовавшиеся частицы металлического серебра оказывают каталитическое действие на реакцию химического восстановления. В результате проявления скрытое изображение "усиливается" в 105...1011 раз.

Страницы: 1, 2, 3, 4



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.