на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Производство аммиака
p align="left"> 5. Технологическое оформление процесса синтеза аммиака

Принципиальная технологическая схема синтеза аммиака в агрегате мощность 1360 т/сут на отечественном оборудовании.

Свежая азотоводородная смесь после очистки метанированием сжимается в центробежном компрессоре до давления 32 Мпа и после охлаждения в воздушном холодильнике (на схеме не показан) поступает в нижнюю часть конденсационной колонны 8 для очистки от остаточных примесей СОз, Н2О и следов масла. Свежий газ барботирует через слой сконденсировавшегося жидкого аммиака, освобождается при этом от водяных паров и следов СО2. и масла, насыщается аммиаком до 3-5% и смешивается с циркуляционным газом. Полученная смесь проходит по трубкам теплообменника конденсационной колонны и направляется в межтрубное пространство выносного теплообменника 4, где нагревается до 185-1950С за счет теплоты газа, выходящего из колонны синтеза. Затем циркуляционный газ поступает в колонны синтеза 2.

В колонне синтеза газ проходит снизу вверх по кольцевой щели между корпусом колонны и кожухом насадки и поступает в межтрубное пространство внутреннего теплообменника, размещенного в горловине корпуса колонны синтеза. В теплообменнике циркуляционный газ нагревается до температуры начала реакции 400-440°С за счет теплоты конвертированного газа и затем последовательно проходит четыре слоя катализатора, в результате чего концентрация аммиака в газе повышается до 15%. Пройдя через центральную трубу, при температуре 500-515°С азотоводородоаммиачная смесь направляется во внутренний теплообменник, где охлаждается до 330°С. дольней шее охлаждение газовой смеси до 215°С осуществляется в трубном пространстве подогревателя питательной воды 3, в трубном пространстве выносного теплообменника 4 до 65°С за счет холодного циркулирующего газа, идущего по межтрубному пространству, и затем в аппаратах воздушного охлаждения 7 до 40°С, при этом часть аммиака конденсируется. Жидкий аммиак, сконденсировавшийся при охлаждении, отделяется в сепараторе 6, а затем смесь, содержащая 10-12% NH3, идет на циркуляционное колесо компрессора 5 азотоводородной смеси, где сжимается до 32 Мпа.

Циркуляционный газ при температуре 50°С поступает в систему вторичной конденсации, включающую конденсационную колонну 8 и испарители жидкого аммиака 15. В конденсационной колонне газ охлаждается до 18°С и в испарителя за счет кипения аммиака в межтрубном пространстве до - 5°С. Из трубного пространства испарителей смесь охлажденного циркуляционного газа и сконденсировавшегося аммиака поступает в сепарационную часть конденсационной колонны, где происходит отделение жидкого аммиака от газа и смешение свежей азотоводородной смеси с циркуляционным газом. Далее газовая смесь проходит корзину с фарфоровыми кольцами Рашига, где отделяется от капель жидкого аммиака, поднимается по трубкам теплообменника и направляется в выносной теплообменник 4, а затем в колонну синтеза.

Жидкий аммиак из первичного сепаратора проходит магнитный фильтр 16, где из него выделяется катализаторная пыль, и смешивается с жидким аммиаком из конденсационной колонны 8. Затем его дросселируют до давления 4 Мпа и отводят в сборник жидкого аммиака 11. В результате дросселирования жидкого аммиака до 4 Мпа происходит выделение растворенных в нем газов Н2, N2, O2, CH4. Эти газы, называемые танковыми, содержат 16-18% NН3. Поэтому танковые газы направляют в испаритель 12 с целью утилизации аммиака путем его конденсации при - 25°С. Из испарителя танковые газы и сконденсировавшийся аммиак поступает в сепаратор 13 для отделения жидкого аммиака, направляемого в сборник жидкого аммиака 11.

Для поддержания в циркуляционном газе постоянного содержания инертных газов, не превышающего 10%, производится продувка газа после первичной конденсации аммиака (после сепаратора 6). Продувочные газы содержат 8-9% NН3, который выделяется при температуре - 25... -30°С в конденсационной колонне 9 и испарители 10 продувочных газов. Смесь танковых и продувочных газов после выделения аммиака используется как топливный газ.

6. Охрана окружающей среды в производстве аммиака

Крупнотоннажное производство аммиака характеризуют следующие выбросы в окружающую среду:

1) газовые, содержащие в своем составе аммиак, оксиды азота и углерода и другие примеси

2) сточные воды, состоящие из конденсата, продуктов промывки реакторов и систем охлаждения;

3) низко потенциальную теплоту.

Относительная концентрация токсичных примесей производства аммиака в виде оксида углерода и оксидов азота в отходящих газах невысока, но когда происходит восстановление оксидов азота до элементного азота, для устранения даже незначительных выбросов разрабатываются специальные мероприятия. Полное исключение токсичных выбросов возможно при использовании каталитической очистки в присутствии газа-восстановителя.

В результате воздушного охлаждения и замены поршневых компрессоров турбокомпрессорами значительно уменьшилось потребление воды на 1 т МНз, что привело к существенному снижению количества сточных вод (а в 50 раз).

Низкопотенциальную теплоту удается утилизировать повышением ее потенциала: это достигается вводом некоторого количества высокопотенциальной теплоты. Но этот путь получения механической энергии связан с увеличением загрязненности воздушного бассейна дымовыми газами. Одним из способов уменьшения выбросов и повышения эффективности производства аммиака является применение энерготехнологической схемы с парога-зовым циклом, в котором в качестве рабочей теплоты используется не только теплота водяного пара, но и продуктов сгорания топлива.

Операторная схема

колонна синтеза

теплообменники

теплообменники

сеператор первой ступени

сеператор второй ступени

сборник жидкого NH3

сепаратор

Блок схема

колонна синтеза

сеператор первой ступени

сеператор второй ступени

танк

Исходные данные для расчета

Содержание NH3 газа после колонны синтеза% по объему

15

Давление газа, Мпа

-в сепараторе I ступени

-в сепараторе II ступени

Давление газа, ат.

-в сепараторе I ступени

-в сепараторе II ступени

29

31

295,72

316,0

Температура газа, С

-после водяного воздушного охлаждения

-после аммиачного холодильника

30

-8

Растворимость азотоводородной смеси в жидком аммиаке нм3/кг(NH3)

-в сепараторе I ступени

-в сепараторе II ступени

0,087

0,0176

Концентрация NH3 в танковых газах% (по объему)

39

Базис расчета, кг NH3 на выходе из танка

3600

Расчет концентраций аммиака в потоке по формуле ларсена и блэка

, где

- концентрация аммиака в потоке% (по объему)

pi и Ti давление, ат. и температура, К газа

=0,883, =101,181=7,65%=0,0765

=0,374 =100,714=2,37%=0,0237

Материальный баланс

По колонне синтеза:

По азотоводороднои смеси

1)

По сепаратору I ступени:

По азотоводороднои смеси

2)

По аммиаку

3)

По сепаратору II ступени:

По азотоводородной смеси

4)

По аммиаку

5)

По танку:

По азотоводородной смеси

6) +=

По аммиаку

7) +=

П - расчетное количество аммиака.

- растворимость авс в жидком аммиаке

Соответствие переменных потокам:

Наименование потока

Усл. обозн.

Хi

Размерн.

Значение

1

Поток, поступающий в колонну синтеза

N31

X1

КМОЛЬ

1951,6

2

Поток газа после колонны синтеза

N12

X2

КМОЛЬ

1737,3

3

Поток газа после сепаратора I ступени

N23

X3

КМОЛЬ

1595,7

4

Поток свежей азотоводородной смеси

N03

X4

КМОЛЬ

432,7

5

Поток танковых газов

N402

X5

КМОЛЬ

6,609

6

Поток жидкого NH3 после сепаратора I ступени

X6

КГ

2355,7

7

Поток жидкого NH3 после сепаратора II ступени

X7

КГ

1289,5

Получаем уравнения

1) 1,0237X1-1,15X2=0

2) 0,85X2-0,9235X3-0,001281X6=0

3) 0,15X2-0,0765X3-0,0588X6=0

4) - 0,9763X1+0,9235X3+X4-0,000786X7=0

5) - 0,0237X1+0,0765X3-0,0588X7=0

6) - 0,61X5+0,001281X6+0,000786X7=0

7) - 0,39X5+0,0588X6+0,0588X7=94,12

Составим матрицу коэффициентов при Х и столбец свободных членов:

X1

X2

X3

X4

X5

X6

X7

Св. члены

1,0237

-1,15

0

0

0

0

0

0

0

0,85

-0,9235

0

0

-0,001281

0

0

0

0,15

-0,0765

0

0

-0,0588

0

0

-0,9763

0

0,9235

1

0

0

-0,000786

0

-0,0237

0

0,0765

0

0

0

-0,0588

0

0

0

0

0

-0,61

0,001281

0,000786

0

0

0

0

0

-0,39

0,0588

0,0588

211,76

Решаем систему уравнений матричным методом в программе Excel, умножая матрицу, обратную матрице коэффициентов но вектор свободных членов.

Заполняем таблицу потоков.

1. Расчет количеств азота и водорода в АВС.

N03=X4=432,7 кмоль

=N03Vm=432,722,4 = 9692,48 м3

Отношение H2: N2 =3: 1Wоб(H2) =0,75Wоб(N2) =0,25

=0,75 9692,48 = 7269,36 м3

=0,25 9692,48 = 2423,12 м3

m(H2) =

m(N2) =

Общая масса АВС

m(АВС) =m(H2) +m(N2) =649,05+3028,90=3677,95

Массовые доли азота и водорода:

Wмас(H2) = =17,6%

Wмас(N2) ==82,4%

2. Расчет количеств водорода, азота и аммиака в танковых газах.

=N402Vm=6,60922,4 = 148,04 м3

Количество водорода и азота:

NАВС=N402(1-) =6,609(1-0,39) =4,031кмоль

=NАВСVm=4,03122,4 = 90,30 м3

=0,75 90,30 = 67,72 м3

=0,25 90,30 = 22,57 м3

m(H2) =Wмас() ==0,16%

m(N2) =Wмас() ==0,77%

Количество аммиака в танковых газах.

NNH3=N402=6,6090,39=2,577кмоль

V(NH3) =NNH3Vm=2,57722,4=57,73 м3

m(NH3) = Wмас() ==1,19%

Количество жидкого аммиака.

m(NH3) =3600 кг Wмас() ==97,88%

N(NH3) =211,76 кмоль

V(NH3) =N(NH3) Vm=211,7622,4=4743,42 м3

Общая расходная масса

M==3600+43,81+6,05+28,22=3678,08 кг

Масса танковых газовэ

mтг= M-=3678,08-3600=78,08 кг

Wмас(т. г) ==2,12%

Невязка

=mавс - M=3677,95-3678,08=0,13 Wмас(невязки) 0

Общий расходный объем(при н. у)

V==4743,42+57,73+67,72+22,57=4891,44 м3

Материальный баланс системы

Базис расчета 3600 кг NH3

Приход

Расход

Наименование

М3, н. у.

кг

% масс

Наименование

М3, н. у.

кг

% масс

АВС

9692,48

3677,95

100

Жидкий NH3

4743,42

3600

97,88

В том числе

Танковые газы

148,04

78,08

2,12

Азот

2423,12

3028,90

82,4

Азот

22,57

28,22

0,77

Водород

7269,36

649,05

17,6

Водород

67,72

6,05

0,16

Аммиак

57,73

43,81

1, 19

Всего

9692,48

3677,95

100

Всего

4891,44

3677,95

100

Невязка

0,13

Расчет основных технологических показателей

Выход аммиака

Расходные коэффициенты по сырью.

По азоту

а) теоретический

б) практический

По водороду

а) теоретический

б) практический

20

Список использованной литературы

А.М. Кутепов, Т. И - Бондарева, М.Г. Беренгартен, Общая химическая технология, М., Высшая школа, 1990

Справочник азотчика, М., Химия, 1987

Ф.А. Андреев, С.И. Карган, Л.И. Козлов, В.Ф. Приставко, Технология связанного азота, М., Химия, 1966

Г.Н. Кононова, В.В. Сафонов, Е.В. Егорова, Расчёт материального баланса химико-технологических систем интегральным методом, М., МИТХТ, 1999

Страницы: 1, 2, 3



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.